Exploiting Iterative-ness for Parallel ML Computations

Henggang Cui, Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky, Qirong Ho, Greg Ganger, Phil B. Gibbons*, Garth A. Gibson, Eric P. Xing (CMU, *Intel)

ITERATIVE ML

- Iterative fitting of model parameters
 - Assume a model describes input data
 - “Learn” model parameters that fit data
 - The algorithm is usually iterative
 - Refine initial guess until params converge
- Parallel computation for big problems
 - Partition input data among workers
 - Workers share model parameters
 - One approach: BSP + parameter server
 - Barrier synch each iteration

EXPLOITING ITERATIVE-NESS

- Often, each iteration read/writes same params
 - Can tune system with access pre-knowledge
 - Data placement to reduce network traffic
 - Data placement to reduce remote NUMA accesses
 - Static structures to reduce locking / marshaling
 - Static cache contents to reduce eviction costs
 - Informed prefetching
- Ways to obtain per-iteration access sequences
 - Explicit virtual iteration
 - Efficient, but requires more programmer effort
 - Explicit identification of iteration boundaries
 - Less effort, but more performance overhead

ITERSTORE

- A parameter server that exploits iterative-ness
 - With READ, UPDATE, and CLOCK interface
 - An improved version of LazyTable

EXPERIMENTAL RESULTS

- Hardware setup
 - 8 nodes, each with 64 cores and 128 GB memory
 - connected via Infiniband network (40Gbps)
- Overall performance:

- Optimization effectiveness break-down: