More Effective Distributed ML with

a stale synchronous parallel parameter server
e ol | .

Q. Ho, J. Cipar, H. Cui, J.-K. Kim,
S. Lee, P. B. Gibbons, G. Gibson,
G. R. Ganger and E. P. Xing

http://www.istc-cc.cmu.edu/

Intel Science & Technology
Center for Cloud Computing

Machine Learning is Ubiquitous
F. - 2

Learning of graphical models App 1: Social networks
and social media

Po

Estimating D(p,po) = K L(pllpo)

time-evolving
network topology

App I: Computational
biology, and genomics

Nonparametric
Bayesian inference

App3: Web-scale text
mining and NLP

R,
é}‘ X & VL
DL 4

7

o ¥
> e Y
Nonstationary time
series analysis ikt
““““““““““““““““ App4: Anomaly detection

§

and video surveillance

8

83

g 888§
QL
3
3

Multi-task Learning | u

\ ! g ’
Tl o) [
\ R -)

& structured

-

0 models L- é’li}eswlﬁ 4&7

App6: Web-scale
image mining

Theory of nonparametric high-
dimensional inference

= p [G(Al,hmt*) £ G] -0 (exp (—c””;" e logp)) 50 L
S 0.5 L

n

Challe oe #1 - Massive Data Scale

900,000,000

800,000,000
700,000,000
600,000,000
500,000,000

400,000,000

300,000,000

200,000,000

100,000,000
ource: Internet Systems Consortiu .iSC. OrY

0
mmmmmmmmmmmmmmmmm
T TP TP ITITIT IO
:::::::::::::::::
uuuuuuuuuuuuuuuuu
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

THE LATEST ON EVERYBODY'S FAVORITE

Internet Domain Survey Host Count

S Int t Systems C tium (www. ag)

SOCIAL NETWORK

WWW'M' 845 -

| 1 of every 5 | | million ngﬁw | 100 billion

OF ALL PAGE VIEWS USERS | CONNECTIONS

Facebook Users
In Millions Jtaz;055
By Ben Foster

s i
HE

88 5285558888882 238z:z33 3
® ¢ 5 ® & 5 & & 5 & ¢ 5 ¥ & 5 ® ¢ 5 ¥ ¢ 5
422423732373 z22582328z:223:z

single machine, a familiar problem!

~1B nodes, do not fitting into the main memory of a

© Eric Xing @ CMT, zo13

Challenge #2 - Gigantic Model Size

B - Y

10°
-
‘ A ¥ - 3
Genome Structure| | : henome Structur
(Linkage Disequilibrium\ - Graph R & e
X \ .ll _35:','0.:: e J‘u = .1
. lx - N kB >
i

{ ahowlenduz owT
py

\(eoloizyriq Bnul 1ot
wopeTy

(Epistasis
ACGTTTTACTGTACAATT

: | < :“‘!1' J 4 | ;.J- -'-1E Ii‘
B | | (.
\ 4 arg mBaX J—'_‘n.n (fLXz-, .Yz'}.aﬁ?"““@ (@)' s g

-0, o g T |-_’ 105

Dynamic Trait

> 10'! parameters, do not fitting into the main memory
of a single machine either!

© Eric Xing @ CMT, zo13

Machine Learning Families

al + Nonparametric - Regularized - Sparse Structured .+ Spectral/Matrix
Bayesian Models Bayesian Methods* Large-Margin /o Regression ~ SParse Coding Methods . Others

9%

g/

Hardware and infrastructure

* Network switches < Network attached storage < Server machines + GPUs * Cloud compute - Virtual Machines
* Infiniband * Flash storage » Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines

6/,) De%ree of parallelism, convergence s
_4 \Theory. analysis, sub-sample complexity ... g5

@\ Representation: ?e%rt?ﬁggt and informative)

‘@ (Model: Generic building blocks: loss functlonsD

structures, constraints, priors ...

a . Parallelizable and stochastic MCMC,
‘Q Algorithm: vy, Opt, Spectrum ... N

—\ . High: Matlab/R
O.(Programmmg model & Interface:M&tum: ¢/JAVA)

Low: MPI

7 . Distributed architecture: DFS
Q\SyStenL parameter server, task scheduler...)

P~ / e
‘Q \Hardware: GPU, flash storage, cloud ... © Eric Xing @ CMU, 2013

An Example Task: Topical Inference

A A sl

« Say, we want to have a mapping ..., so that

Topic 1: Politics

4 i
|
! document ¢
document d i '
X |
I
= ;
|
= Compare similarity # g
= Classify contents Topic 2: Economics

o Cluster/group/categorize docs
= Distill semantics and perspectives

Topic Modeling Algorithms: MCMC and SVI

Markov Chain Monte Carlo: Stochastic Variational Inference:
Randomly sample each variable in sequence Gradient ascent on randomly-chosen variables
Prior Prior

o -
4?

<[T

J| L ETpre,

The Need for Distributed Computation

AR ol "

« Ex: Topic Modeling MCMC samplers process 100K-1M words per
second for 100 topics, on an 8-core machine
= If one document is 1000 words, that’s 100-1000 docs per second

« What if we want 1B docs and 10K topics?

« Memory:
s 1B * 10K = 10 trillion parameters = 40TB of RAM

e Computation:
s 1B docs, 10K topics -> 100M seconds on one machine -> 1000+ days!

« Need many machines for memory, computational requirements!

Distributed Samplm

R A

Sample Z Sample Z Sample Z

For epoch 1 For epoch 2 For epoch 3 S Forepoch

m

L
Requires a reduction step

Parameter Servers for ML

R A

« Provide simple table-based API for quick porting of
single-machine parallel ML programs
» read_row(table,row,s)
- Retrieve table-row with staleness s
= inc(table,row,el,val)
* Increment table(row,el) by val

o clock()

- Inform all servers that current/thread processor has
completed one clock

« ML programmers simply replace array/matrix data
structures with parameter server calls

e Question: what synchronizing scheme to use?

nchrom’zatn Models for PS

A A sl

« Bulk Synchronous Parallel execution

= No update errors, but synchronization barriers
introduce stragglers and waste computational time

« Asynchronous execution
= No stragglers, but update errors can end up
unbounded in distributed settings (e.g. one machine is
systematically slower than the rest)

Iterative-Convergence

el Ao 4

« ML programs are iterative-convergent

» Repeatedly execute update equations to minimize a loss function
» Examples:
- Variational inference for topic models
« Stochastic gradient descent for matrix factorization o /
« MCMC to find posterior distribution modes
* Block coordinate descent for Lasso regression

o Iterative-convergent algorithms are empirically and
theoretically resilient to errors in updates

= Errors will decrease update effectiveness, but will not forfeit
convergence and correctness provided they are limited

>

nchronous Parallel

Staleness in SSP

Staleness Threshold 3

Thread 1

Thread 2

SR — -

' IA

Thread 3

Thread 4

ism (SSP

Thread 1 will block on
further reads until Thread 2
has reached clock 4

AN

B Results visible to all threads,
due to being old enough

Results visible to thread 1,
due to read-my-writes

Results not necessarily visible

u Gsscscscsssscccsssales

| to thread 1, due to being
I too fresh

L I I : | |

1 1 >
5

o

=

N

W ==
[N .

O) e = o= - -

8 9 Clock

Allow threads to run at their own pace, without synchronization
Ensure fastest/slowest threads do not grow more than S iterations apart

Serve data from thread-local and process-local caches

rather than over the network

SSP for Iteratwe Convergent ML

R A

 Bulk Synchronous Parallel execution

= No update errors, but synchronization barriers
introduce stragglers and waste computational time

« Asynchronous execution

= No stragglers, but update errors can end up
unbounded in distributed settings (e.g. one machine is
systematically slower than the rest)

« Stale Synchronous Parallel (SSP)

= Use bounded staleness to strictly limit maximum
error, while reducing synchronization costs

= Aims for a sweet spot between BSP and Async

Cache hierarchy for staleness

» LazyTables Parameter Server

« Stale reads served by local thread/
process caches on the client

machine Application
thread

Client process

Table server |H

Table data

e Only read from server if local "
caches are too stale

Thread Pending
cache requests
« Writes are immediately committed L‘%/ T
after each clock() — 7|

» Okay since ML programs perform cache
far more reads than writes |

-9.00E+08
-9.50E+08
-1.00E+09
-1.05E+09
-1.10E+09

-1.15E+09

Log-Likelihood

-1.20E+09
-1.25E+09

-1.30E+09

LDA on NYtimes Dataset

LDA 32 machines (256 cores), 10% docs per iter

(

D

500

10

—

DO 20

]

/ // /’/ ——BSP (stale 0) :
/ / -#-gtale 32
—*—async -
Seconds

(0)

SSP is both fast and has convergence guarantees
BSP has convergence guarantees but is slow
Full Asynchronous is fast but has weak convergence guarantees

Log-Likelihood

-8E+08

-9E+08

-1E+09

-1.1E+09

-1.2E+09

-1.3E+09

-1.4E+09

LDA on NYtimes dataset

(staleness = 10, 1k docs per core per iteration)

20

00 4000 60

00

80

(0]¢]

10000

Doubling # machines
almost halves time
taken to converge

=&—32 machines (256

cores)
=16 machines (128

cores)

== 8 machines (64 cores)

=>¢=4 machines (32 cores)

i
/

{
/

=2 machines (16 cores)

Seconds

Inverse time to

w
O

==t==]deal Scaling

N W
d (@]

e=l==SSP

-

0 10 20 30 40
machines

N
=]

[
[9)]

convergence

=
=}

9]

o

SSP computational model enables linear scaling with # machines

(up to at least 32)

Network bottlenecks in ML Mitigated

P .

Time Breakdown: Compute vs Network

LDA 32 machines (256 cores), 10% data per iter

BSP is
SSP with
stale=0

8000

7000

6000 ¥ Network waiting time |
g 5000 ® Compute time -
g

000

S 4
Q
&) 3000

2000

1000 I I I l l:

0 . , , . .
______________) 0) 8 16 2 32 40 48

Staleness

Network communication is a large bottleneck with 10s of machines

SSP balances network and compute time

ulit vs Quantity

Quantity: iterations versus

time

LDA 32 machines, 10% data

1000

600

400

Iterations

800 -

200 -

o} 2000 4000 6000

Seconds

8000

troff '

Quality: objective versus

iterations

LDA 32 machines, 10% data

-9.00E+08

-9.50E+08

Log-Likelihood

-1.30E+09

-1.00E+09 -

=&—BSP (stale 0)
=-stale 8

-1.05E+09 -

=h—gstale 16

-1.10E+09 -

stale 24

-1.15E+09 -

=¥=gstale 32

-1.20E+09 -

=@-stale 40

~-stale 48

-1.25E+09 -

Iterations

Progress per time is (iters/sec) * (progress/iter)
High staleness yields more iters/ses, but lowers progress/iter

per time

Find the sweet spot staleness >0 that yields maximum progress

bo

Effectlve across dlfferen_t ML Programs

Matrix Factorization on Netflix Lasso on synthetic data
Objective function versus time Objective function versus time
MF 32 machines (256 threads) Lasso 16 machines (128 threads)
1.40E+09 4.80E-01 ~—BSP (stale 0)
1.20E+09 -
0 =&—BSP (stale 0) 4.70E-01 —Hstale1o
o 1.00E+09 \ —#—stale 20
2 \ \ =l—gstale 7 © 4.60E-01
45 8.00E+08 \ \ g \N\ =>¢=stale 40
_% 6.00E+08 \ :% 4.50E-01 k ==gtale 80
© 4.00E+08 N © 4.40E-01 \‘\’
2.00E+08 - 4.30E-01 %
: = =
0.00E+00 . . 4.20E-01 - -
0 500 1000 1500 2000 0 1000 2000 3000 4000
Seconds Seconds

Why SSP converges despite error

SSP approximates sequential execution

Staleness Threshold 3

<€ >
Thread 1 >
Thread 2 -2 Sequential execution
Possible error
Thread 3 > ~ windows for this
update: :'
Thread 4 >
} i i } t ; t t ' ' >
0 1 2 3 4 5 6 7 8 9 Clock

When a thread reads a parameter, the number of “missing updates”
is bounded (compared to sequential execution)
Hence numeric error in parameter is also bounded

Why SSP converges despite error

A & s

Theorem 1 (SGD under SSP): Suppose we want to find the minimizer x* of a convex function

f(x) = = Zle fi(x), via gradient descent on one component V f; at a time. We assume the
components f; are also convex. Let u; := —7 X), where 17 = % witho = ——E— for
p ft t ItVft(t) Jt NG Lm

certain constants F', L. Then, under suitable conditions (f; are L-Lipschitz and the distance between
two points D(x||x") < F?),

2s+1)P
T

1 T
> ft(fct)} — f(x") <4FL

SSP converges for Stochastic Gradient Descent, and does so at a rate no
slower than O(T-°-5), where T is the number of iterations. This rate is only an upper
bound - depending on how the parameter server is implemented, there is room to
make the actual convergence rate approach the optimal rate for a single core.

On A General System Interface for Big

R A e

« What is an ML program: An objective or loss function
that measures solution quality

- e.g. least-squared loss in regression
- e.g. negative log-likelihood in probabilistic models
- e.g. risk in adversarial or bandit problems

« Key Signatures of an ML program

= ML algorithms are iterative-convergent

- Iterative-convergent algorithms are
resilient to errors in updates

= ML programs are blocky

» Opportunities for efficient
parallelization under bounded error

« A general Big ML Framework shall leverage these properties

© Eric Xing @ CMU, 2013

-ML Framework We Envision
& ' A b > 2

Machine Learning Families

* Nonparametric ° Regularized - Sparse Structured . * Spectral/Matrix
Bayesian Models Bayesian Methods. Large-Margin I/O Regression ° Sparse Coding Methods . Others

Algorithmic Building Blocks

“Thin Waist” —

System Building Blocks

Big Model System Programming Interface

Big Data System

Hardware and infrastructure

* Network switches < Network attached storage < Server machines + GPUs * Cloud compute -« Virtual Machines
+ Infiniband Flash storage * Desktops/Laptops (e.g. Amazon EC2)

« NUMA machines

m

Thank You!

