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App 1: Social networks 
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Theory of nonparametric high-
dimensional inference  

Learning of graphical models 

App6: Web-scale  
image mining 

Nonparametric 
Bayesian inference 

ACGTTTTACTGTACAATTACGTTTTACTGTACAATT

p

App3: Web-scale text 
mining and NLP 

App I: Computational 
biology, and genomics 

Nonstationary time 
series analysis 

App4: Anomaly detection  
and video surveillance 

App5: Computational finance 

Machine Learning is Ubiquitous  



~1B nodes, do not fitting into the main memory of a 
single machine, a familiar problem! 
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Challenge #1 – Massive Data Scale 
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> 1011 parameters, do not fitting into the main memory 
of a single machine either! 
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Challenge #2 – Gigantic Model Size 



A Thin Waist ? 

•  Network switches 
•  Infiniband 

•  Network attached storage 
•  Flash storage 

•  Server machines 
•  Desktops/Laptops 
•  NUMA machines 

•  GPUs •  Cloud compute 
(e.g. Amazon EC2) 

•  Virtual Machines 

Hardware and infrastructure 

•  Nonparametric 
Bayesian Models 

•  Graphical 
Models 

•  Sparse Structured 
I/O Regression •  Sparse Coding 

•  Spectral/Matrix 
Methods 

•  Regularized 
Bayesian Methods •  Others •  Large-Margin 

Machine Learning Families 

Algorithmic Building Blocks 

System Building Blocks 
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Theory: Degree of parallelism, convergence 
analysis, sub-sample complexity …  

System: Distributed architecture: DFS, 
parameter server, task scheduler… 

Model:    Generic building blocks: loss functions,  
structures, constraints, priors … 

Algorithm: Parallelizable and stochastic MCMC, 
VI, Opt, Spectrum … 

Representation:  Compact and informative 
features 

Programming model & Interface: High: Matlab/R 
Medium: C/JAVA 
Low: MPI 

  

Toward A General-Purpose 
Framework for Big Learning 

Hardware: GPU, flash storage, cloud … © Eric Xing @ CMU, 2013 



An Example Task: Topical Inference 

•  Say, we want to have a mapping …, so that  

▫  Compare similarity  
▫  Classify contents 
▫  Cluster/group/categorize docs 
▫  Distill semantics and perspectives  
▫  ..  

⇒	



Topic 1: Politics 

Topic 2: Economics 

Topic 3: Sports 



Topic Modeling Algorithms: MCMC and SVI 

8 

θ	
  	
  	
  

z	
  	
  

w	
  	
  φ	
  	
  	
  

N	
  

D	
  	
  

	
  	
  

Prior	
  

K 

Markov Chain Monte Carlo: 
Randomly sample each variable in sequence 

Stochastic Variational Inference: 
Gradient ascent on randomly-chosen variables 
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The Need for Distributed Computation 

•  Ex: Topic Modeling MCMC samplers process 100K-1M words per 
second for 100 topics, on an 8-core machine 
▫  If one document is 1000 words, that’s 100-1000 docs per second 

•  What if we want 1B docs and 10K topics? 

•  Memory: 
▫  1B * 10K = 10 trillion parameters = 40TB of RAM 

•  Computation: 
▫  1B docs, 10K topics -> 100M seconds on one machine -> 1000+ days! 

•  Need many machines for memory, computational requirements! 



Distributed Sampling Cycle 

Sample Z 
For epoch 1 

Sample Z 
For epoch 2 

Sample Z 
For epoch 3 

Sample Z 
For epoch 

m 

Barrier ? 

Write 
counts to  

memcached 

Write 
counts to  

memcached 

Write 
counts to  

memcached 

Write 
counts to  

memcached 

Collect 
counts and 
sample Ω 

Do nothing Do nothing Do nothing Sample  ΩΩt 
Requires a reduction step 



•  Provide simple table-based API for quick porting of 
single-machine parallel ML programs 
▫  read_row(table,row,s) 

  Retrieve table-row with staleness s 
▫  inc(table,row,el,val) 

  Increment table(row,el) by val 
▫  clock() 

  Inform all servers that current/thread processor has 
completed one clock 

•  ML programmers simply replace array/matrix data 
structures with parameter server calls 

•  Question: what synchronizing scheme to use? 

Parameter Servers for ML 



•  Bulk Synchronous Parallel execution 
▫  No update errors, but synchronization barriers 

introduce stragglers and waste computational time 

•  Asynchronous execution 
▫  No stragglers, but update errors can end up 

unbounded in distributed settings (e.g. one machine is 
systematically slower than the rest) 

 

Synchronization Models for PS 



•  ML programs are iterative-convergent 

▫  Repeatedly execute update equations to minimize a loss function 
▫  Examples: 

  Variational inference for topic models 
  Stochastic gradient descent for matrix factorization 
  MCMC to find posterior distribution modes 
  Block coordinate descent for Lasso regression 

•  Iterative-convergent algorithms are empirically and 
theoretically resilient to errors in updates 

▫  Errors will decrease update effectiveness, but will not forfeit 
convergence and correctness provided they are limited 

Iterative-Convergence in ML 



Stale Synchronous Parallelism (SSP) 

Allow threads to run at their own pace, without synchronization 
Ensure fastest/slowest threads do not grow more than S iterations apart 

Serve data from thread-local and process-local caches rather than over the network 



•  Bulk Synchronous Parallel execution 
▫  No update errors, but synchronization barriers 

introduce stragglers and waste computational time 

•  Asynchronous execution 
▫  No stragglers, but update errors can end up 

unbounded in distributed settings (e.g. one machine is 
systematically slower than the rest) 

•  Stale Synchronous Parallel (SSP) 
▫  Use bounded staleness to strictly limit maximum 

error, while reducing synchronization costs 
▫  Aims for a sweet spot between BSP and Async 

SSP for Iterative-Convergent ML 



  LazyTables Parameter Server 

•  Stale reads served by local thread/
process caches on the client 
machine 

•  Only read from server if local 
caches are too stale 

•  Writes are immediately committed 
after each clock() 
▫  Okay since ML programs perform 

far more reads than writes 

Cache hierarchy for staleness 



Enjoys async speed, but BSP guarantee 
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SSP is both fast and has convergence guarantees 
BSP has convergence guarantees but is slow 

Full Asynchronous is fast but has weak convergence guarantees 



Scaling with # machines 
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(staleness = 10, 1k docs per core per iteration) 
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Doubling # machines 
almost halves time 
taken to converge 

SSP computational model enables linear scaling with # machines 
(up to at least 32) 
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Network bottlenecks in ML Mitigated  
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Network communication is a large bottleneck with 10s of machines 
SSP balances network and compute time 



Quality vs Quantity tradeoff 
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Effective across different ML Programs 
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Why SSP converges despite error 

When a thread reads a parameter, the number of “missing updates” 
is bounded (compared to sequential execution) 

Hence numeric error in parameter is also bounded 



Why SSP converges despite error 

SSP converges for Stochastic Gradient Descent, and does so at a rate no 
slower than O(T-0.5), where T is the number of iterations. This rate is only an upper 
bound - depending on how the parameter server is implemented, there is room to 

make the actual convergence rate approach the optimal rate for a single core. 



•  What is an ML program: An objective or loss function 
that measures solution quality 

  e.g. least-squared loss in regression 
  e.g. negative log-likelihood in probabilistic models 
  e.g. risk in adversarial or bandit problems 

•  Key Signatures of an ML program 

▫  ML algorithms are iterative-convergent 
  Iterative-convergent algorithms are                                                

resilient to errors in updates 
 
▫  ML programs are blocky 

  Opportunities for efficient                                                    
parallelization under bounded error 

•  A general Big ML Framework shall leverage these properties 
 

On A General System Interface for Big ML 

© Eric Xing @ CMU, 2013 



Algorithmic Building Blocks 

System Building Blocks 

•  Network switches 
•  Infiniband 

•  Network attached storage 
•  Flash storage 

•  Server machines 
•  Desktops/Laptops 
•  NUMA machines 

•  GPUs •  Cloud compute 
(e.g. Amazon EC2) 

•  Virtual Machines 

Hardware and infrastructure 

•  Nonparametric 
Bayesian Models 

•  Graphical 
Models 

•  Sparse Structured 
I/O Regression •  Sparse Coding 

•  Spectral/Matrix 
Methods 

•  Regularized 
Bayesian Methods •  Others •  Large-Margin 

Machine Learning Families 

“Thin Waist” 

•  Dynamic Scheduling 
•  Adaptive Load-Balancing 
•  Client Autonomicity 

Big Model System 
•  Data Partitioning 
•  Parameter Server 
•  Thread-Level Caching 

Big Data System 

•  Stochastic Inference 

•  Distributed MC •  Graph 
Propagation 

•  Convex 
Optimization 

•  Spectral 
Algorithms 

Algorithmic Building Blocks 

Programming Interface 

•  Fault tolerance •  Multi-instance 
tenancy 

•  For ML practitioners 
•  For ML scientists 
•  APIs for Power users 

•  Bounded 
Consistency 

•  Scheduler-PS 
Integration 

System Building Blocks 

The Big-ML Framework We Envision 



 

Thank You! 
 


