
http://www.istc-cc.cmu.edu/

Q. Ho, J. Cipar, H. Cui, J.-K. Kim,
S. Lee, P. B. Gibbons, G. Gibson,
G. R. Ganger and E. P. Xing

More	 Effec)ve	 Distributed	 ML	 with	 	
a	 stale	 synchronous	 parallel	 parameter	 server	

Estimating
time-evolving

network topology

Multi-task Learning
& structured
I/O models

App 1: Social networks
and social media

Theory of nonparametric high-
dimensional inference

Learning of graphical models

App6: Web-scale
image mining

Nonparametric
Bayesian inference

ACGTTTTACTGTACAATTACGTTTTACTGTACAATT

p

App3: Web-scale text
mining and NLP

App I: Computational
biology, and genomics

Nonstationary time
series analysis

App4: Anomaly detection
and video surveillance

App5: Computational finance

Machine Learning is Ubiquitous

~1B nodes, do not fitting into the main memory of a
single machine, a familiar problem!

© Eric Xing @ CMU, 2013

Challenge #1 – Massive Data Scale

106

105

> 1011 parameters, do not fitting into the main memory
of a single machine either!

© Eric Xing @ CMU, 2013

Challenge #2 – Gigantic Model Size

A Thin Waist ?

•  Network switches
•  Infiniband

•  Network attached storage
•  Flash storage

•  Server machines
•  Desktops/Laptops
•  NUMA machines

•  GPUs •  Cloud compute
(e.g. Amazon EC2)

•  Virtual Machines

Hardware and infrastructure

•  Nonparametric
Bayesian Models

•  Graphical
Models

•  Sparse Structured
I/O Regression •  Sparse Coding

•  Spectral/Matrix
Methods

•  Regularized
Bayesian Methods •  Others •  Large-Margin

Machine Learning Families

Algorithmic Building Blocks

System Building Blocks

5
© Eric Xing @ CMU, 2013

Theory: Degree of parallelism, convergence
analysis, sub-sample complexity …

System: Distributed architecture: DFS,
parameter server, task scheduler…

Model: Generic building blocks: loss functions,
structures, constraints, priors …

Algorithm: Parallelizable and stochastic MCMC,
VI, Opt, Spectrum …

Representation: Compact and informative
features

Programming model & Interface: High: Matlab/R
Medium: C/JAVA
Low: MPI

Toward A General-Purpose
Framework for Big Learning

Hardware: GPU, flash storage, cloud … © Eric Xing @ CMU, 2013

An Example Task: Topical Inference

•  Say, we want to have a mapping …, so that

▫  Compare similarity
▫  Classify contents
▫  Cluster/group/categorize docs
▫  Distill semantics and perspectives
▫  ..

⇒	

Topic 1: Politics

Topic 2: Economics

Topic 3: Sports

Topic Modeling Algorithms: MCMC and SVI

8

θ	 	 	

z	 	

w	 	 φ	 	 	

N	

D	 	

	 	

Prior	

K

Markov Chain Monte Carlo:
Randomly sample each variable in sequence

Stochastic Variational Inference:
Gradient ascent on randomly-chosen variables

θ	 	 	

z	 	

w	 	 φ	 	 	

N	

D	 	

	 	

Prior	

K

The Need for Distributed Computation

•  Ex: Topic Modeling MCMC samplers process 100K-1M words per
second for 100 topics, on an 8-core machine
▫  If one document is 1000 words, that’s 100-1000 docs per second

•  What if we want 1B docs and 10K topics?

•  Memory:
▫  1B * 10K = 10 trillion parameters = 40TB of RAM

•  Computation:
▫  1B docs, 10K topics -> 100M seconds on one machine -> 1000+ days!

•  Need many machines for memory, computational requirements!

Distributed Sampling Cycle

Sample Z
For epoch 1

Sample Z
For epoch 2

Sample Z
For epoch 3

Sample Z
For epoch

m

Barrier ?

Write
counts to

memcached

Write
counts to

memcached

Write
counts to

memcached

Write
counts to

memcached

Collect
counts and
sample Ω

Do nothing Do nothing Do nothing Sample ΩΩt
Requires a reduction step

•  Provide simple table-based API for quick porting of
single-machine parallel ML programs
▫  read_row(table,row,s)

  Retrieve table-row with staleness s
▫  inc(table,row,el,val)

  Increment table(row,el) by val
▫  clock()

  Inform all servers that current/thread processor has
completed one clock

•  ML programmers simply replace array/matrix data
structures with parameter server calls

•  Question: what synchronizing scheme to use?

Parameter Servers for ML

•  Bulk Synchronous Parallel execution
▫  No update errors, but synchronization barriers

introduce stragglers and waste computational time

•  Asynchronous execution
▫  No stragglers, but update errors can end up

unbounded in distributed settings (e.g. one machine is
systematically slower than the rest)

Synchronization Models for PS

•  ML programs are iterative-convergent

▫  Repeatedly execute update equations to minimize a loss function
▫  Examples:

  Variational inference for topic models
  Stochastic gradient descent for matrix factorization
  MCMC to find posterior distribution modes
  Block coordinate descent for Lasso regression

•  Iterative-convergent algorithms are empirically and
theoretically resilient to errors in updates

▫  Errors will decrease update effectiveness, but will not forfeit
convergence and correctness provided they are limited

Iterative-Convergence in ML

Stale Synchronous Parallelism (SSP)

Allow threads to run at their own pace, without synchronization
Ensure fastest/slowest threads do not grow more than S iterations apart

Serve data from thread-local and process-local caches rather than over the network

•  Bulk Synchronous Parallel execution
▫  No update errors, but synchronization barriers

introduce stragglers and waste computational time

•  Asynchronous execution
▫  No stragglers, but update errors can end up

unbounded in distributed settings (e.g. one machine is
systematically slower than the rest)

•  Stale Synchronous Parallel (SSP)
▫  Use bounded staleness to strictly limit maximum

error, while reducing synchronization costs
▫  Aims for a sweet spot between BSP and Async

SSP for Iterative-Convergent ML

  LazyTables Parameter Server

•  Stale reads served by local thread/
process caches on the client
machine

•  Only read from server if local
caches are too stale

•  Writes are immediately committed
after each clock()
▫  Okay since ML programs perform

far more reads than writes

Cache hierarchy for staleness

Enjoys async speed, but BSP guarantee

-1.30E+09

-1.25E+09

-1.20E+09

-1.15E+09

-1.10E+09

-1.05E+09

-1.00E+09

-9.50E+08

-9.00E+08
0 500 1000 1500 2000

Lo
g-

Li
ke

li
ho

od

Seconds

LDA on NYtimes Dataset
LDA 32 machines (256 cores), 10% docs per iter

BSP (stale 0)

stale 32

async

SSP is both fast and has convergence guarantees
BSP has convergence guarantees but is slow

Full Asynchronous is fast but has weak convergence guarantees

Scaling with # machines

-1.4E+09

-1.3E+09

-1.2E+09

-1.1E+09

-1E+09

-9E+08

-8E+08
0 2000 4000 6000 8000 10000

Lo
g-

Li
ke

li
ho

od

Seconds

LDA on NYtimes dataset
(staleness = 10, 1k docs per core per iteration)

32 machines (256
cores)
16 machines (128
cores)
8 machines (64 cores)

4 machines (32 cores)

2 machines (16 cores)

Doubling # machines
almost halves time
taken to converge

SSP computational model enables linear scaling with # machines
(up to at least 32)

0
5

10
15
20
25
30
35

0 10 20 30 40

In
ve

rs
e

ti
m

e
to

co

nv
er

ge
nc

e

machines

Ideal Scaling

SSP

Network bottlenecks in ML Mitigated

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40 48

Se
co

nd
s

Staleness

Time Breakdown: Compute vs Network
LDA 32 machines (256 cores), 10% data per iter

Network waiting time

Compute time

BSP is
SSP with
stale = 0

Network communication is a large bottleneck with 10s of machines
SSP balances network and compute time

Quality vs Quantity tradeoff

0

200

400

600

800

1000

0 2000 4000 6000 8000

It
er

at
io

ns

Seconds

Quantity: iterations versus
time

LDA 32 machines, 10% data

-1.30E+09

-1.25E+09

-1.20E+09

-1.15E+09

-1.10E+09

-1.05E+09

-1.00E+09

-9.50E+08

-9.00E+08
0 200 400 600 800 1000

Lo
g-

Li
ke

li
ho

od

Iterations

Quality: objective versus
iterations

LDA 32 machines, 10% data

BSP (stale 0)
stale 8
stale 16
stale 24
stale 32
stale 40
stale 48

Progress per time is (iters/sec) * (progress/iter)
High staleness yields more iters/ses, but lowers progress/iter

Find the sweet spot staleness >0 that yields maximum progress
per time

Effective across different ML Programs

0.00E+00
2.00E+08
4.00E+08
6.00E+08
8.00E+08
1.00E+09
1.20E+09
1.40E+09

0 500 1000 1500 2000

O
bj

ec
ti

ve

Seconds

Objective function versus time
MF 32 machines (256 threads)

BSP (stale 0)
stale 7

Matrix Factorization on Netflix

4.20E-01

4.30E-01

4.40E-01

4.50E-01

4.60E-01

4.70E-01

4.80E-01

0 1000 2000 3000 4000
O

bj
ec

ti
ve

Seconds

Objective function versus time
Lasso 16 machines (128 threads)

BSP (stale 0)

stale 10

stale 20

stale 40

stale 80

Lasso on synthetic data

Why SSP converges despite error

When a thread reads a parameter, the number of “missing updates”
is bounded (compared to sequential execution)

Hence numeric error in parameter is also bounded

Why SSP converges despite error

SSP converges for Stochastic Gradient Descent, and does so at a rate no
slower than O(T-0.5), where T is the number of iterations. This rate is only an upper
bound - depending on how the parameter server is implemented, there is room to

make the actual convergence rate approach the optimal rate for a single core.

•  What is an ML program: An objective or loss function
that measures solution quality

  e.g. least-squared loss in regression
  e.g. negative log-likelihood in probabilistic models
  e.g. risk in adversarial or bandit problems

•  Key Signatures of an ML program

▫  ML algorithms are iterative-convergent
  Iterative-convergent algorithms are

resilient to errors in updates

▫  ML programs are blocky

  Opportunities for efficient
parallelization under bounded error

•  A general Big ML Framework shall leverage these properties

On A General System Interface for Big ML

© Eric Xing @ CMU, 2013

Algorithmic Building Blocks

System Building Blocks

•  Network switches
•  Infiniband

•  Network attached storage
•  Flash storage

•  Server machines
•  Desktops/Laptops
•  NUMA machines

•  GPUs •  Cloud compute
(e.g. Amazon EC2)

•  Virtual Machines

Hardware and infrastructure

•  Nonparametric
Bayesian Models

•  Graphical
Models

•  Sparse Structured
I/O Regression •  Sparse Coding

•  Spectral/Matrix
Methods

•  Regularized
Bayesian Methods •  Others •  Large-Margin

Machine Learning Families

“Thin Waist”

•  Dynamic Scheduling
•  Adaptive Load-Balancing
•  Client Autonomicity

Big Model System
•  Data Partitioning
•  Parameter Server
•  Thread-Level Caching

Big Data System

•  Stochastic Inference

•  Distributed MC •  Graph
Propagation

•  Convex
Optimization

•  Spectral
Algorithms

Algorithmic Building Blocks

Programming Interface

•  Fault tolerance •  Multi-instance
tenancy

•  For ML practitioners
•  For ML scientists
•  APIs for Power users

•  Bounded
Consistency

•  Scheduler-PS
Integration

System Building Blocks

The Big-ML Framework We Envision

Thank You!

