

# More Effective Distributed ML with a stale synchronous parallel parameter server

Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. Ganger and E. P. Xing

Intel Science & Technology

http://www.istc-cc.cmu.edu/

Center for Cloud Computing

## Machine Learning is Ubiquitous



#### Challenge #1 - Massive Data Scale



~1B nodes, do not fitting into the main memory of a single machine, a familiar problem!

© Eric Xing @ CMU, 2013

### Challenge #2 - Gigantic Model Size



> 10<sup>11</sup> parameters, do not fitting into the main memory of a single machine either!

© Eric Xing @ CMU, 2013

# <u>A Thin Waist ?</u>



#### **Toward A General-Purpose**



# An Example Task: Topical Inference

• Say, we want to have a mapping ..., so that



- Compare similarity
- Classify contents
- Cluster/group/categorize docs
- Distill semantics and perspectives



Topic 2: Economics

••••

#### **Topic Modeling Algorithms: MCMC and SVI**



#### Stochastic Variational Inference: Gradient ascent on randomly-chosen variables





#### The Need for Distributed Computation

- Ex: Topic Modeling MCMC samplers process 100K-1M words per second for 100 topics, on an 8-core machine
  - If one document is 1000 words, that's 100-1000 docs per second
- What if we want 1B docs and 10K topics?
- Memory:
  - 1B \* 10K = 10 trillion parameters = 40TB of RAM
- Computation:
  - B docs, 10K topics -> 100M seconds on one machine -> 1000+ days!
- Need many machines for memory, computational requirements!

#### **Distributed Sampling Cycle**



#### Parameter Servers for ML

- Provide simple table-based API for quick porting of single-machine parallel ML programs
  - read\_row(table,row,s)
    - Retrieve table-row with staleness s
  - inc(table,row,el,val)
    - Increment table(row,el) by val
  - o clock()
    - Inform all servers that current/thread processor has completed one clock
- ML programmers simply replace array/matrix data structures with parameter server calls
- Question: what synchronizing scheme to use?

#### Synchronization Models for PS

- Bulk Synchronous Parallel execution
  - No update errors, but synchronization barriers introduce stragglers and waste computational time
- Asynchronous execution
  - No stragglers, but update errors can end up unbounded in distributed settings (e.g. one machine is systematically slower than the rest)

#### Iterative-Convergence in ML

- ML programs are **iterative-convergent** 
  - Repeatedly execute update equations to minimize a loss function
  - Examples:
    - Variational inference for topic models
    - Stochastic gradient descent for matrix factorization
    - MCMC to find posterior distribution modes
    - Block coordinate descent for Lasso regression



- Iterative-convergent algorithms are empirically and theoretically resilient to errors in updates
  - Errors will decrease update effectiveness, but will not forfeit convergence and correctness provided they are limited

## Stale Synchronous Parallelism (SSP)



Allow threads to run at their own pace, without synchronization Ensure fastest/slowest threads do not grow more than S iterations apart Serve data from thread-local and process-local caches rather than over the network

### SSP for Iterative-Convergent ML

- Bulk Synchronous Parallel execution
  - No update errors, but synchronization barriers introduce stragglers and waste computational time
- Asynchronous execution
  - No stragglers, but update errors can end up unbounded in distributed settings (e.g. one machine is systematically slower than the rest)
- Stale Synchronous Parallel (SSP)
  - Use bounded staleness to strictly limit maximum error, while reducing synchronization costs
  - Aims for a sweet spot between BSP and Async

### Cache hierarchy for staleness

#### LazyTables Parameter Server

- Stale reads served by local thread/ process caches on the client machine
- Only read from server if local caches are too stale
- Writes are immediately committed after each clock()
  - Okay since ML programs perform far more reads than writes





### Enjoys async speed, but BSP guarantee



**SSP is both fast and has convergence guarantees** BSP has convergence guarantees but is slow Full Asynchronous is fast but has weak convergence guarantees

#### Scaling with # machines



SSP computational model enables linear scaling with # machines (up to at least 32)

### Network bottlenecks in ML Mitigated

#### Time Breakdown: Compute vs Network

LDA 32 machines (256 cores), 10% data per iter



Network communication is a large bottleneck with 10s of machines **SSP balances network and compute time** 

#### Quality vs Quantity tradeoff



Progress per time is (iters/sec) \* (progress/iter) High staleness yields more iters/ses, but lowers progress/iter Find the sweet spot staleness >0 that yields maximum progress per time

### Effective across different ML Programs



### Why SSP converges despite error

#### SSP approximates sequential execution



When a thread reads a parameter, the number of "missing updates" is bounded (compared to sequential execution) Hence numeric error in parameter is also bounded

#### Why SSP converges despite error

**Theorem 1 (SGD under SSP):** Suppose we want to find the minimizer  $\mathbf{x}^*$  of a convex function  $f(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} f_t(\mathbf{x})$ , via gradient descent on one component  $\nabla f_t$  at a time. We assume the components  $f_t$  are also convex. Let  $\mathbf{u}_t := -\eta_t \nabla f_t(\tilde{\mathbf{x}}_t)$ , where  $\eta_t = \frac{\sigma}{\sqrt{t}}$  with  $\sigma = \frac{F}{L\sqrt{2(s+1)P}}$  for certain constants F, L. Then, under suitable conditions ( $f_t$  are L-Lipschitz and the distance between two points  $D(x||x') \leq F^2$ ),

$$R[\mathbf{X}] := \left[\frac{1}{T} \sum_{t=1}^{T} f_t(\tilde{\mathbf{x}}_t)\right] - f(\mathbf{x}^*) \le 4FL\sqrt{\frac{2(s+1)P}{T}}$$



**SSP converges for Stochastic Gradient Descent**, and does so at a rate no slower than O(T<sup>-0.5</sup>), where T is the number of iterations. This rate is only an upper bound - depending on how the parameter server is implemented, there is room to make the actual convergence rate approach the optimal rate for a single core.

#### On A General System Interface for Big ML

- What is an ML program: An objective or loss function that measures solution quality
  - e.g. least-squared loss in regression
  - e.g. negative log-likelihood in probabilistic models
  - e.g. risk in adversarial or bandit problems
- Key Signatures of an ML program
  - ML algorithms are iterative-convergent
    - Iterative-convergent algorithms are resilient to errors in updates
  - ML programs are blocky
    - Opportunities for efficient parallelization under bounded error





A general Big ML Framework shall leverage these properties

#### The Big-ML Framework We Envision





# Thank You!