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Machine Learning is Ubiquitous
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Challe oe #1 - Massive Data Scale
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single machine, a familiar problem!

~1B nodes, do not fitting into the main memory of a
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Challenge #2 - Gigantic Model Size
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Machine Learning Families

al + Nonparametric - Regularized - Sparse Structured .+ Spectral/Matrix
Bayesian Models Bayesian Methods* Large-Margin /o Regression ~ SParse Coding  Methods . Others

9%

g/

Hardware and infrastructure

* Network switches < Network attached storage < Server machines + GPUs * Cloud compute - Virtual Machines
* Infiniband * Flash storage » Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines
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An Example Task: Topical Inference
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« Say, we want to have a mapping ..., so that

Topic 1: Politics
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= Compare similarity # g
= Classify contents Topic 2: Economics

o Cluster/group/categorize docs
= Distill semantics and perspectives



Topic Modeling Algorithms: MCMC and SVI

Markov Chain Monte Carlo: Stochastic Variational Inference:
Randomly sample each variable in sequence Gradient ascent on randomly-chosen variables
Prior Prior
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The Need for Distributed Computation
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« Ex: Topic Modeling MCMC samplers process 100K-1M words per
second for 100 topics, on an 8-core machine
= If one document is 1000 words, that’s 100-1000 docs per second

« What if we want 1B docs and 10K topics?

« Memory:
s 1B * 10K = 10 trillion parameters = 40TB of RAM

e Computation:
s 1B docs, 10K topics -> 100M seconds on one machine -> 1000+ days!

« Need many machines for memory, computational requirements!



Distributed Samplm
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Parameter Servers for ML
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« Provide simple table-based API for quick porting of
single-machine parallel ML programs
» read_row(table,row,s)
- Retrieve table-row with staleness s
= inc(table,row,el,val)
* Increment table(row,el) by val

o clock()

- Inform all servers that current/thread processor has
completed one clock

« ML programmers simply replace array/matrix data
structures with parameter server calls

e Question: what synchronizing scheme to use?



nchrom’zatn Models for PS
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« Bulk Synchronous Parallel execution

= No update errors, but synchronization barriers
introduce stragglers and waste computational time

« Asynchronous execution
= No stragglers, but update errors can end up
unbounded in distributed settings (e.g. one machine is
systematically slower than the rest)



Iterative-Convergence

el Ao 4

« ML programs are iterative-convergent

» Repeatedly execute update equations to minimize a loss function
» Examples:
- Variational inference for topic models
« Stochastic gradient descent for matrix factorization o /
« MCMC to find posterior distribution modes
* Block coordinate descent for Lasso regression

o Iterative-convergent algorithms are empirically and
theoretically resilient to errors in updates

= Errors will decrease update effectiveness, but will not forfeit
convergence and correctness provided they are limited
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nchronous Parallel

Staleness in SSP

Staleness Threshold 3

Thread 1

Thread 2
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Thread 1 will block on
further reads until Thread 2
has reached clock 4
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B Results visible to all threads,
due to being old enough

Results visible to thread 1,
due to read-my-writes

Results not necessarily visible
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Allow threads to run at their own pace, without synchronization
Ensure fastest/slowest threads do not grow more than S iterations apart

Serve data from thread-local and process-local caches

rather than over the network



SSP for Iteratwe Convergent ML
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 Bulk Synchronous Parallel execution

= No update errors, but synchronization barriers
introduce stragglers and waste computational time

« Asynchronous execution

= No stragglers, but update errors can end up
unbounded in distributed settings (e.g. one machine is
systematically slower than the rest)

« Stale Synchronous Parallel (SSP)

= Use bounded staleness to strictly limit maximum
error, while reducing synchronization costs

= Aims for a sweet spot between BSP and Async



Cache hierarchy for staleness

» LazyTables Parameter Server

« Stale reads served by local thread/
process caches on the client

machine Application
thread

Client process

Table server |H

Table data

e Only read from server if local "
caches are too stale

Thread Pending
cache requests
« Writes are immediately committed L‘%/ T
after each clock() — 7|

» Okay since ML programs perform cache
far more reads than writes |
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SSP is both fast and has convergence guarantees
BSP has convergence guarantees but is slow
Full Asynchronous is fast but has weak convergence guarantees



Log-Likelihood
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Network bottlenecks in ML Mitigated
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Time Breakdown: Compute vs Network

LDA 32 machines (256 cores), 10% data per iter
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Network communication is a large bottleneck with 10s of machines

SSP balances network and compute time



ulit vs Quantity

Quantity: iterations versus

time

LDA 32 machines, 10% data

1000

600

400

Iterations

800 -

200 -

o} 2000 4000 6000

Seconds

8000

troff '

Quality: objective versus

iterations

LDA 32 machines, 10% data

-9.00E+08

-9.50E+08

Log-Likelihood

-1.30E+09

-1.00E+09 -

=&—BSP (stale 0)
=-stale 8

-1.05E+09 -

=h—gstale 16

-1.10E+09 -

stale 24

-1.15E+09 -

=¥=gstale 32

-1.20E+09 -

=@-stale 40

~-stale 48

-1.25E+09 -

Iterations

Progress per time is (iters/sec) * (progress/iter)
High staleness yields more iters/ses, but lowers progress/iter
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Find the sweet spot staleness >0 that yields maximum progress
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Effectlve across dlfferen_t ML Programs

Matrix Factorization on Netflix Lasso on synthetic data
Objective function versus time Objective function versus time
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Why SSP converges despite error

SSP approximates sequential execution

Staleness Threshold 3

<€ >
Thread 1 >
Thread 2 -2 Sequential execution
Possible error
Thread 3 > ~ windows for this
update: :'
Thread 4 >
} i i } t ; t t ' ' >
0 1 2 3 4 5 6 7 8 9 Clock

When a thread reads a parameter, the number of “missing updates”
is bounded (compared to sequential execution)
Hence numeric error in parameter is also bounded



Why SSP converges despite error
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Theorem 1 (SGD under SSP): Suppose we want to find the minimizer x* of a convex function

f(x) = = Zle fi(x), via gradient descent on one component V f; at a time. We assume the
components f; are also convex. Let u; := —7 X ), where 17 = % witho = ——E— for
p ft t ItVft( t) Jt NG Lm

certain constants F', L. Then, under suitable conditions ( f; are L-Lipschitz and the distance between
two points D(x||x") < F?),

2s+1)P
T

1 T
> ft(fct)} — f(x") <4FL

SSP converges for Stochastic Gradient Descent, and does so at a rate no
slower than O(T-°-5), where T is the number of iterations. This rate is only an upper
bound - depending on how the parameter server is implemented, there is room to
make the actual convergence rate approach the optimal rate for a single core.



On A General System Interface for Big
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« What is an ML program: An objective or loss function
that measures solution quality

- e.g. least-squared loss in regression
- e.g. negative log-likelihood in probabilistic models
- e.g. risk in adversarial or bandit problems

« Key Signatures of an ML program

= ML algorithms are iterative-convergent

- Iterative-convergent algorithms are
resilient to errors in updates

= ML programs are blocky

» Opportunities for efficient
parallelization under bounded error

« A general Big ML Framework shall leverage these properties

© Eric Xing @ CMU, 2013



-ML Framework We Envision
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Machine Learning Families

* Nonparametric  ° Regularized - Sparse Structured . * Spectral/Matrix
Bayesian Models Bayesian Methods. Large-Margin I/O Regression ° Sparse Coding Methods . Others

Algorithmic Building Blocks

“Thin Waist” —

System Building Blocks

Big Model System Programming Interface

Big Data System

Hardware and infrastructure

* Network switches < Network attached storage < Server machines + GPUs * Cloud compute -« Virtual Machines
+ Infiniband  Flash storage * Desktops/Laptops (e.g. Amazon EC2)

« NUMA machines
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