
Discretized Streams!
Fault Tolerance Streaming Computation at Scale

UC	 BERKELEY	

Ion Stoica
UC Berkeley

Joint work with: Matei Zaharia, Tathagata Das (TD),

Haoyuan Li (HY), Timothy Hunter, Scott Shenker

Why Care?
Data is important as the decisions it enables

Decisions on fresh data better than on stale data
» More and more apps want to process large data streams

Website monitoring
Fraud detection

Ad monetizationRequire tens to hundreds of nodes

Require second-scale latencies

Why Hard beyond Scale & Latency?

Typically run 24x7 services
Need to recover from failure very fast, e.g.,
sub-second recovery time
» Need to handle stragglers as well

Traditional systems either inefficient or slow

Traditional Streaming Systems
DAGs of stateful operators

mutable state

node 1

node 3

input
records

node 2

input
records

Traditional Streaming Systems
DAGs of stateful operators
Each operator
» Get record
» Process record and update state
» Eventually emit a new record

mutable state

node 1

node 3

input
records

node 2

input
records

Stateful
operator

mutable
stateinput records output records

Traditional Streaming Systems
DAGs of stateful operators
Each operator:
» Get record
» Process record and update state
» Eventually emit a new record

State is lost if node fails

Two general techniques for fault tolerance

mutable state

node 1

node 3

input
records

node 2

input
records

Replication

Separate set of “hot failover” nodes
process the same data streams

Sync. protocols ensures exact
ordering of records in both sets

On failure, the system switches over
to the failover nodes

sync
protocol

input

input

hot
failover
nodes

Fast recovery, but up to 2x hardware cost

Examples: Borealis, Flux

input

input

Upstream Backup
Examples: TimeStream, Storm

cold failover
node

Each node backups forwarded
records

Maintain “cold failover”

On failure, upstream nodes replay
the backup records serially

Only need one standby, but slow recovery

backup

replay

Understanding upstream Backup
input records output records

checkpoint events state checkpoint

Understanding upstream Backup
input records output records

state checkpointfailure point

fail-over nodedelay

Delay as large as checkpoint interval

Key Idea: Stateless Tasks
Split computation in small stateless tasks
Naturally define boundaries where
computation can be moved around

state 2

Statless
task

state 1

01

Statless
task

23

Statless
task

state 3

4 5

Failure Recovery
state 2

Statless
task

state 1

01

Statless
task

23

Statless
task

State 3

4 5

state 2

Statless
task

state 1

67

Statless
task

89

Statless
task

State 3

1011

state checkpoint

Scheduler: maintain
lineage from latest
checkpoint

Failure Recovery
state 2

Statless
task

state 1

01

Statless
task

23

Statless
task

State 3

4 5

state 2

Statless
task

state 1

67

Statless
task

89

Statless
task

State 3

1011

failure point

Statless
task

23

Statless
task

45

Statless
task

67

state 1 state 2

State 3

State 4
Recompute
in parallel

Discretized Stream
Processing

Discretized Stream Processing
Run streaming computation as a set of small,

determinist batch jobs

Keep lineage since last checkpoint
Challenge: make data batches as small as
possible

Discretized Stream Processing
DStream: seq. of immutable, partitioned datasets
» Can be created from live data streams or by applying

bulk, parallel transformations on other DStreams

[1s:2s)

Input DStream:
replicated dataset
stored in memory

Output or state DStream:
non-replicate dataset
stored in memory

[0s:1s)

input
records

Example: Counting page views
Input DStream: split incoming records into 1s
batches

views	 =	 readStream("http:...",	 "1s")	 	

creating a DStream
views

[0s:1s)

Example: Counting page views
Input DStream: split incoming records into 1s
batches

views	 =	 readStream("http:...",	 "1s")	 	

ones	 =	 views.map(ev	 =>	 (ev.url,	 1))	

counts	 =	 ones.runningReduce((x,y)	 =>	 x+y)	

creating a DStream

transformation

ones counts

map reduce

[1s:2s)

views

[0s:1s)

Fine-grained Lineage
Track fine-grained operation
lineage

Datasets are periodically
checkpointed
» Asynchronously to prevent

long lineages

views ones counts

[0s:1s)

[1s:2s)

map reduce

[2s:3s)

Use lineage to recompute
lost partitions

Datasets in different batches
recomputed in parallel

Partitions within a dataset
also recomputed in parallel

views ones counts

[0s:1s)

[1s:2s)

map reduce

[2s:3s)

Parallel Fault Recovery

How much faster than Upstream Backup?
Recovery time = time to recompute & catch up
» Depends on available resources in the cluster
» Lower system load before failure allows faster recovery

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

R
e
c
o
v
e
ry

 t
im

e
(m

in
)

System Load (Before Failure)

Upstream Backup
Parallel Recovery N = 5

Parallel Recovery N = 10
Parallel Recovery N = 20Parallel

recovery with
5 nodes faster
than upstream

backup

Parallel
recovery with

10 nodes faster
than with 5

nodes

Parallel Straggler Recovery
Straggler mitigation techniques
» Detect slow tasks (e.g. 2X slower than other tasks)
» Speculatively launch more copies of the tasks in

parallel on other machines

Mask the impact of slow nodes on the
progress of the system

Evaluation

Spark Streaming
Implemented on top of Spark*
» Supports in-memory storage and recovery via

lineage

Numerous performance optimization

[*Resilient Distributed Datasets - NSDI, 2012]

How fast is Spark Streaming?
Can process 60M records/second on

100 nodes at 1 second latency
Tested with 100 4-core EC2 instances and 100 streams of text

25

0	

1	

2	

3	

4	

0	 50	 100	

Cl
us
te
r	 T

hr
ou

gh
pu

t	 (
G
B/
s)
	

#	 Nodes	 in	 Cluster	

WordCount	

1	 sec	
2	 sec	

0	

2	

4	

6	

8	

0	 50	 100	

Cl
us
te
r	 T

hh
ro
ug
hp

ut
	 (G

B/
s)
	

#	 Nodes	 in	 Cluster	

Grep	

1	 sec	
2	 sec	

Count the sentences
having a keyword

WordCount over 30
sec sliding window

Fault Recovery
Recovery time improves with more frequent
checkpointing and more nodes

0.0

1.0

2.0

3.0

4.0

5.0

B
at

ch
 P

ro
ce

ss
in

g
Ti

m
e

(s
)

Time

30s ckpts, 20 nodes

30s ckpts, 40 nodes

10s ckpts, 20 nodes

10s ckpts, 40 nodes

Failure

Word Count over
30 sec window

Straggler Mitigation
Speculative execution of slow tasks mask the
effect of stragglers

0.55 0.54

3.02 2.40

1.00
0.64

0.0

1.0

2.0

3.0

4.0

WordCount Grep

B
at

ch
 P

ro
ce

ss
in

g
Ti

m
e

(s
)

No straggler Straggler, no speculation

Straggler, with speculation

Unification
Spark + SprakStreaming unifies
» Batch
» Interactive
» Streaming

Combine live data streams with historic data
liveCounts.join(historicCounts).map(...)	

Interactively query live streams

liveCounts.slice(“21:00”,	 “21:05”).count()

Batch

Interactive Streaming

Spark

Summary
Large scale streaming systems must handle
failures and stragglers
Discretized Streams model streaming
computation as series of batch jobs
» Naturally exploit parallelism in streams
» Scales to 100 nodes with 1 second latency
» Recovers from failures and stragglers very fast

Spark Streaming is open source spark-project.org
» Used in production by ~10 organizations!

Exciting Future Work
Trade between latency and throughput by
dynamically adjusting batch size
Partial computation to handle tight latency
» Don’t wait for stragglers
» Expose partially executed DAG
» (Eventually) update results when straggler finish

Dynamic optimization of execution plan
» Use measurements from previous job to optimize

execution of next job

