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Why Care?
Data is important as the decisions it enables

Decisions on fresh data better than on stale data
» More and more apps want to process large data streams

Website monitoring
Fraud detection

Ad monetizationRequire tens to hundreds of nodes

Require second-scale latencies





Why Hard beyond Scale & Latency?

Typically run 24x7 services
Need to recover from failure very fast, e.g., 
sub-second recovery time
» Need to handle stragglers as well

Traditional systems either inefficient or slow



Traditional Streaming Systems
DAGs of stateful operators
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Traditional Streaming Systems
DAGs of stateful operators
Each operator
» Get record
» Process record and update state
» Eventually emit a new record
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Traditional Streaming Systems
DAGs of stateful operators
Each operator:
» Get record
» Process record and update state
» Eventually emit a new record

State is lost if node fails

Two general techniques for fault tolerance
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Replication

Separate set of “hot failover” nodes 
process the same data streams

Sync. protocols ensures exact 
ordering of records in both sets

On failure, the system switches over 
to the failover nodes

sync 
protocol

input

input

hot 
failover 
nodes

Fast recovery, but up to 2x hardware cost

Examples: Borealis, Flux



input

input

Upstream Backup
Examples: TimeStream, Storm

cold failover
node

Each node backups forwarded 
records

Maintain “cold failover”

On failure, upstream nodes replay 
the backup records serially

Only need one standby, but slow recovery

backup

replay



Understanding upstream Backup
input records output records

checkpoint events state checkpoint



Understanding upstream Backup
input records output records

state checkpointfailure point

fail-over nodedelay

Delay as large as checkpoint interval



Key Idea: Stateless Tasks
Split computation in small stateless tasks
Naturally define boundaries where 
computation can be moved around
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Failure Recovery
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Discretized Stream 
Processing



Discretized Stream Processing
Run streaming computation as a set of small, 

determinist batch jobs 


Keep lineage since last checkpoint
Challenge: make data batches as small as 
possible




Discretized Stream Processing
DStream: seq. of immutable, partitioned datasets
» Can be created from live data streams or by applying 

bulk, parallel transformations on other DStreams




[1s:2s)

Input DStream: 
replicated dataset 
stored in memory

Output or state DStream: 
non-replicate dataset 
stored in memory

[0s:1s)

input
records



Example: Counting page views
Input DStream: split incoming records into 1s 
batches

views	  =	  readStream("http:...",	  "1s")	  	  

creating a DStream
views

[0s:1s)



Example: Counting page views
Input DStream: split incoming records into 1s 
batches

views	  =	  readStream("http:...",	  "1s")	  	  

ones	  =	  views.map(ev	  =>	  (ev.url,	  1))	  

counts	  =	  ones.runningReduce((x,y)	  =>	  x+y)	  

creating a DStream

transformation

ones counts

map reduce

[1s:2s)

views

[0s:1s)



Fine-grained Lineage
Track fine-grained operation 
lineage

Datasets are periodically 
checkpointed
» Asynchronously to prevent 

long lineages

views ones counts

[0s:1s)

[1s:2s)

map reduce

[2s:3s)



Use lineage to recompute 
lost partitions

Datasets in different batches 
recomputed in parallel

Partitions within a dataset 
also recomputed in parallel

views ones counts

[0s:1s)

[1s:2s)

map reduce

[2s:3s)

Parallel Fault Recovery



How much faster than Upstream Backup?
Recovery time = time to recompute & catch up
» Depends on available resources in the cluster
» Lower system load before failure allows faster recovery 
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Parallel Straggler Recovery
Straggler mitigation techniques
» Detect slow tasks (e.g. 2X slower than other tasks)
» Speculatively launch more copies of the tasks in 

parallel on other machines



Mask the impact of slow nodes on the 
progress of the  system



Evaluation



Spark Streaming
Implemented on top of Spark*
» Supports in-memory storage and recovery via 

lineage


Numerous performance optimization



[ *Resilient Distributed Datasets - NSDI, 2012 ]



How fast is Spark Streaming?
Can process 60M records/second on 

100 nodes at 1 second latency
Tested with 100 4-core EC2 instances and 100 streams of text
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Fault Recovery
Recovery time improves with more frequent 
checkpointing and more nodes
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Straggler Mitigation
Speculative execution of slow tasks mask the 
effect of stragglers 
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Unification 
Spark + SprakStreaming unifies
» Batch 
» Interactive
» Streaming

Combine live data streams with historic data
liveCounts.join(historicCounts).map(...)	  

Interactively query live streams

liveCounts.slice(“21:00”,	  “21:05”).count()



Batch

Interactive Streaming

Spark



Summary
Large scale streaming systems must handle 
failures and stragglers
Discretized Streams model streaming 
computation as series of batch jobs
» Naturally exploit parallelism in streams
» Scales to 100 nodes with 1 second latency
» Recovers from failures and stragglers very fast

Spark Streaming is open source spark-project.org
» Used in production by ~10 organizations!








Exciting Future Work
Trade between latency and throughput by 
dynamically adjusting batch size
Partial computation to handle tight latency
» Don’t wait for stragglers
» Expose partially executed DAG
» (Eventually) update results when straggler finish 

Dynamic optimization of execution plan
» Use measurements from previous job to optimize 

execution of next job


