
Discretized Streams!
Fault Tolerance Streaming Computation at Scale

UC	
 BERKELEY	

Ion Stoica

UC Berkeley

Joint work with: Matei Zaharia, Tathagata Das (TD),

Haoyuan Li (HY), Timothy Hunter, Scott Shenker

Why Care?

Data is important as the decisions it enables

Decisions on fresh data better than on stale data

» More and more apps want to process large data streams

Website monitoring

Fraud detection

Ad monetization
Require tens to hundreds of nodes

Require second-scale latencies

Why Hard beyond Scale & Latency?

Typically run 24x7 services

Need to recover from failure very fast, e.g.,
sub-second recovery time

» Need to handle stragglers as well

Traditional systems either inefficient or slow

Traditional Streaming Systems

DAGs of stateful operators

mutable state

node 1

node 3

input

records

node 2

input

records

Traditional Streaming Systems

DAGs of stateful operators

Each operator

» Get record

» Process record and update state

» Eventually emit a new record

mutable state

node 1

node 3

input

records

node 2

input

records

Stateful

operator

mutable
state
input records
 output records

Traditional Streaming Systems

DAGs of stateful operators

Each operator:

» Get record

» Process record and update state

» Eventually emit a new record

State is lost if node fails

Two general techniques for fault tolerance

mutable state

node 1

node 3

input

records

node 2

input

records

Replication

Separate set of “hot failover” nodes
process the same data streams

Sync. protocols ensures exact
ordering of records in both sets

On failure, the system switches over
to the failover nodes

sync
protocol

input

input

hot
failover
nodes

Fast recovery, but up to 2x hardware cost

Examples: Borealis, Flux

input

input

Upstream Backup

Examples: TimeStream, Storm

cold failover

node

Each node backups forwarded
records

Maintain “cold failover”

On failure, upstream nodes replay
the backup records serially

Only need one standby, but slow recovery

backup

replay

Understanding upstream Backup

input records
 output records

checkpoint events
 state checkpoint

Understanding upstream Backup

input records
 output records

state checkpoint
failure point

fail-over node
delay

Delay as large as checkpoint interval

Key Idea: Stateless Tasks

Split computation in small stateless tasks

Naturally define boundaries where
computation can be moved around

state 2

Statless

task

state 1

0
1

Statless

task

2
3

Statless

task

state 3

4
5

Failure Recovery

state 2

Statless

task

state 1

0
1

Statless

task

2
3

Statless

task

State 3

4
5

state 2

Statless

task

state 1

6
7

Statless

task

8
9

Statless

task

State 3

10
11

state checkpoint

Scheduler: maintain
lineage from latest
checkpoint

Failure Recovery

state 2

Statless

task

state 1

0
1

Statless

task

2
3

Statless

task

State 3

4
5

state 2

Statless

task

state 1

6
7

Statless

task

8
9

Statless

task

State 3

10
11

failure point

Statless

task

2
3

Statless

task

4
5

Statless

task

6
7

state 1
 state 2

State 3

State 4

Recompute

in parallel

Discretized Stream
Processing

Discretized Stream Processing

Run streaming computation as a set of small,

determinist batch jobs

Keep lineage since last checkpoint

Challenge: make data batches as small as
possible

Discretized Stream Processing

DStream: seq. of immutable, partitioned datasets

» Can be created from live data streams or by applying

bulk, parallel transformations on other DStreams

[1s:2s)

Input DStream:
replicated dataset
stored in memory

Output or state DStream:

non-replicate dataset
stored in memory

[0s:1s)

input

records

Example: Counting page views

Input DStream: split incoming records into 1s
batches

views	
 =	
 readStream("http:...",	
 "1s")	
 	

creating a DStream

views

[0s:1s)

Example: Counting page views

Input DStream: split incoming records into 1s
batches

views	
 =	
 readStream("http:...",	
 "1s")	
 	

ones	
 =	
 views.map(ev	
 =>	
 (ev.url,	
 1))	

counts	
 =	
 ones.runningReduce((x,y)	
 =>	
 x+y)	

creating a DStream

transformation

ones
 counts

map
 reduce

[1s:2s)

views

[0s:1s)

Fine-grained Lineage

Track fine-grained operation
lineage

Datasets are periodically
checkpointed

» Asynchronously to prevent

long lineages

views
 ones
 counts

[0s:1s)

[1s:2s)

map
 reduce

[2s:3s)

Use lineage to recompute
lost partitions

Datasets in different batches
recomputed in parallel

Partitions within a dataset
also recomputed in parallel

views
 ones
 counts

[0s:1s)

[1s:2s)

map
 reduce

[2s:3s)

Parallel Fault Recovery

How much faster than Upstream Backup?

Recovery time = time to recompute & catch up

» Depends on available resources in the cluster

» Lower system load before failure allows faster recovery

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

R
e
c
o
v
e
ry

 t
im

e
(m

in
)

System Load (Before Failure)

Upstream Backup
Parallel Recovery N = 5

Parallel Recovery N = 10
Parallel Recovery N = 20Parallel

recovery with
5 nodes faster
than upstream

backup

Parallel
recovery with

10 nodes faster
than with 5

nodes

Parallel Straggler Recovery

Straggler mitigation techniques

» Detect slow tasks (e.g. 2X slower than other tasks)

» Speculatively launch more copies of the tasks in

parallel on other machines

Mask the impact of slow nodes on the
progress of the system

Evaluation

Spark Streaming

Implemented on top of Spark*

» Supports in-memory storage and recovery via

lineage

Numerous performance optimization

[*Resilient Distributed Datasets - NSDI, 2012]

How fast is Spark Streaming?

Can process 60M records/second on

100 nodes at 1 second latency

Tested with 100 4-core EC2 instances and 100 streams of text

25

0	

1	

2	

3	

4	

0	
 50	
 100	

Cl
us
te
r	
 T

hr
ou

gh
pu

t	
 (
G
B/
s)
	

#	
 Nodes	
 in	
 Cluster	

WordCount	

1	
 sec	

2	
 sec	

0	

2	

4	

6	

8	

0	
 50	
 100	

Cl
us
te
r	
 T

hh
ro
ug
hp

ut
	
 (G

B/
s)
	

#	
 Nodes	
 in	
 Cluster	

Grep	

1	
 sec	

2	
 sec	

Count the sentences
having a keyword

WordCount over 30
sec sliding window

Fault Recovery

Recovery time improves with more frequent
checkpointing and more nodes

0.0

1.0

2.0

3.0

4.0

5.0

B
at

ch
 P

ro
ce

ss
in

g
Ti

m
e

(s
)

Time

30s ckpts, 20 nodes

30s ckpts, 40 nodes

10s ckpts, 20 nodes

10s ckpts, 40 nodes

Failure

Word Count over
30 sec window

Straggler Mitigation

Speculative execution of slow tasks mask the
effect of stragglers

0.55 0.54

3.02 2.40

1.00
0.64

0.0

1.0

2.0

3.0

4.0

WordCount Grep

B
at

ch
 P

ro
ce

ss
in

g
Ti

m
e

(s
)

No straggler Straggler, no speculation

Straggler, with speculation

Unification

Spark + SprakStreaming unifies

» Batch

» Interactive

» Streaming

Combine live data streams with historic data

liveCounts.join(historicCounts).map(...)	

Interactively query live streams

liveCounts.slice(“21:00”,	
 “21:05”).count()

Batch

Interactive
 Streaming

Spark

Summary

Large scale streaming systems must handle
failures and stragglers

Discretized Streams model streaming
computation as series of batch jobs

» Naturally exploit parallelism in streams

» Scales to 100 nodes with 1 second latency

» Recovers from failures and stragglers very fast

Spark Streaming is open source spark-project.org

» Used in production by ~10 organizations!

Exciting Future Work

Trade between latency and throughput by
dynamically adjusting batch size

Partial computation to handle tight latency

» Don’t wait for stragglers

» Expose partially executed DAG

» (Eventually) update results when straggler finish

Dynamic optimization of execution plan

» Use measurements from previous job to optimize

execution of next job

