Discretized Streams
Fault Tolerance Streaming Computation at Scale

Ion Stoica
UC Berkeley

Joint work with: Matei Zaharia, Tathagata Das (TD),
Haoyuan Li (HY), Timothy Hunter, Scott Shenker
Why Care?

Data is important as the decisions it enables

Decisions on fresh data better than on stale data

» More and more apps want to process large data streams

Website monitoring

Fraud detection

Require tens to hundreds of nodes

Require second-scale latencies
Why Hard beyond Scale & Latency?

Typically run 24x7 services

Need to recover from failure very fast, e.g., sub-second recovery time
 » Need to handle stragglers as well

Traditional systems either *inefficient* or *slow*
Traditional Streaming Systems

DAGs of stateful operators

Mutable state

Input records

Node 1

Node 2

Node 3
Traditional Streaming Systems

DAGs of stateful operators

Each operator
» Get record
» Process record and update state
» Eventually emit a new record
Traditional Streaming Systems

DAGs of stateful operators

Each operator:
- Get record
- Process record and update state
- Eventually emit a new record

State is lost if node fails

Two general techniques for fault tolerance
Replication

Examples: Borealis, Flux

Separate set of “hot failover” nodes process the same data streams

Sync. protocols ensures exact ordering of records in both sets

On failure, the system switches over to the failover nodes

Fast recovery, but up to 2x hardware cost
Upstream Backup

Examples: TimeStream, Storm

Each node backups forwarded records

Maintain “cold failover”

On failure, upstream nodes replay the backup records *serially*

Only need one standby, but slow recovery
Understanding upstream Backup

input records

checkpoint events

output records

state checkpoint
Understanding upstream Backup

- Input records
- Output records
- Failure point
- State checkpoint
- Delay
- Fail-over node

Delay as large as checkpoint interval
Key Idea: Stateless Tasks

Split computation in small *stateless* tasks

Naturally define boundaries where computation can be moved around
Failure Recovery

Scheduler: maintain lineage from latest checkpoint
Failure Recovery

Recompute in parallel
Discretized Stream Processing
Discretized Stream Processing

Run streaming computation as a set of small, determinist batch jobs

Keep lineage since last checkpoint

Challenge: make data batches as small as possible
Discretized Stream Processing

DStream: seq. of immutable, partitioned datasets

» Can be created from live data streams or by applying bulk, parallel transformations on other DStreams

Input DStream: replicated dataset stored in memory

Output or state DStream: non-replicate dataset stored in memory
Example: Counting page views

Input DStream: split incoming records into 1s batches

views = readStream("http:...", "1s")
Example: Counting page views

Input DStream: split incoming records into 1s batches

```scala
views = readStream("http:...", "1s")
one\s = views.map(ev => (ev.url, 1))
counts = ones.runningReduce((x,y) => x+y)
```

Creating a DStream

Transformation

```
views
  map
  reduce

ones

counts
```

```
[0s:1s)

[1s:2s)
```
Fine-grained Lineage

Track fine-grained operation lineage

Datasets are periodically checkpointed

» Asynchronously to prevent long lineages
Parallel Fault Recovery

Use lineage to recompute lost partitions

Datasets in different batches recomputed in parallel

Partitions within a dataset also recomputed in parallel
How much faster than Upstream Backup?

Recovery time = time to recompute & catch up

» Depends on available resources in the cluster
» Lower system load before failure allows faster recovery

Parallel recovery with 5 nodes faster than upstream backup

Parallel recovery with 10 nodes faster than with 5 nodes
Parallel Straggler Recovery

Straggler mitigation techniques
 » Detect slow tasks (e.g. 2X slower than other tasks)
 » Speculatively launch more copies of the tasks in parallel on other machines

Mask the impact of slow nodes on the progress of the system
Evaluation
Spark Streaming

Implemented on top of Spark*
 » Supports in-memory storage and recovery via lineage

Numerous performance optimization

[*Resilient Distributed Datasets - NSDI, 2012]
How fast is Spark Streaming?

Can process **60M records/second** on **100 nodes** at **1 second latency**

Tested with 100 4-core EC2 instances and 100 streams of text

- **Grep**
 - Count the sentences having a keyword

- **WordCount**
 - WordCount over 30 sec sliding window
Fault Recovery

Recovery time improves with more frequent checkpointing and more nodes.

![Graph showing fault recovery over time with different checkpoint frequencies and node counts.][1]

Graph Details:
- **X-axis:** Batch Processing Time (s)
- **Y-axis:** Word Count over 30 sec window
- **Legend:**
 - 30s ckpts, 20 nodes
 - 30s ckpts, 40 nodes
 - 10s ckpts, 20 nodes
 - 10s ckpts, 40 nodes
- **Note:** Word Count over a 30 sec window is highlighted.

[1]: #/image.png
Straggler Mitigation

Speculative execution of slow tasks mask the effect of stragglers

![Bar chart showing batch processing time for WordCount and Grep tasks with and without speculation.](chart.png)
Unification

Spark + SprakStreaming unifies
 » Batch
 » Interactive
 » Streaming

Combine live data streams with historic data

\[
\text{liveCounts}.\text{join}(\text{historicCounts}).\text{map}(\ldots)
\]

Interactively query live streams

\[
\text{liveCounts}.\text{slice}(\text{“21:00”}, \text{“21:05”}).\text{count}()
\]
Summary

Large scale streaming systems must handle failures and stragglers

Discretized Streams model streaming computation as series of batch jobs
 » Naturally exploit parallelism in streams
 » Scales to 100 nodes with 1 second latency
 » Recovers from failures and stragglers very fast

Spark Streaming is open source spark-project.org
 » Used in production by ~10 organizations!
Exciting Future Work

Trade between latency and throughput by dynamically adjusting batch size

Partial computation to handle tight latency
 » Don’t wait for stragglers
 » Expose partially executed DAG
 » (Eventually) update results when straggler finish

Dynamic optimization of execution plan
 » Use measurements from previous job to optimize execution of next job