
Discretized Streams!
Fault Tolerance Streaming Computation at Scale


UC	
  BERKELEY	
  

Ion Stoica

UC Berkeley




Joint work with: Matei Zaharia, Tathagata Das (TD), 


Haoyuan Li (HY), Timothy Hunter, Scott Shenker






Why Care?

Data is important as the decisions it enables


Decisions on fresh data better than on stale data

» More and more apps want to process large data streams


Website monitoring

Fraud detection


Ad monetization
Require tens to hundreds of nodes


Require second-scale latencies







Why Hard beyond Scale & Latency?


Typically run 24x7 services

Need to recover from failure very fast, e.g., 
sub-second recovery time

» Need to handle stragglers as well


Traditional systems either inefficient or slow




Traditional Streaming Systems

DAGs of stateful operators
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Traditional Streaming Systems

DAGs of stateful operators

Each operator

» Get record

» Process record and update state

» Eventually emit a new record
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Traditional Streaming Systems

DAGs of stateful operators

Each operator:

» Get record

» Process record and update state

» Eventually emit a new record


State is lost if node fails


Two general techniques for fault tolerance
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Replication


Separate set of “hot failover” nodes 
process the same data streams


Sync. protocols ensures exact 
ordering of records in both sets


On failure, the system switches over 
to the failover nodes


sync 
protocol


input


input


hot 
failover 
nodes


Fast recovery, but up to 2x hardware cost


Examples: Borealis, Flux
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input


Upstream Backup

Examples: TimeStream, Storm


cold failover

node


Each node backups forwarded 
records


Maintain “cold failover”


On failure, upstream nodes replay 
the backup records serially


Only need one standby, but slow recovery


backup


replay




Understanding upstream Backup

input records
 output records


checkpoint events
 state checkpoint




Understanding upstream Backup

input records
 output records


state checkpoint
failure point


fail-over node
delay


Delay as large as checkpoint interval




Key Idea: Stateless Tasks

Split computation in small stateless tasks

Naturally define boundaries where 
computation can be moved around
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Failure Recovery
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Scheduler: maintain 
lineage from latest 
checkpoint




Failure Recovery
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Discretized Stream 
Processing




Discretized Stream Processing

Run streaming computation as a set of small, 

determinist batch jobs 




Keep lineage since last checkpoint

Challenge: make data batches as small as 
possible






Discretized Stream Processing

DStream: seq. of immutable, partitioned datasets

» Can be created from live data streams or by applying 

bulk, parallel transformations on other DStreams







[1s:2s)


Input DStream: 
replicated dataset 
stored in memory


Output or state DStream: 

non-replicate dataset 
stored in memory


[0s:1s)


input

records




Example: Counting page views

Input DStream: split incoming records into 1s 
batches


views	
  =	
  readStream("http:...",	
  "1s")	
  	
  

creating a DStream

views


[0s:1s)




Example: Counting page views

Input DStream: split incoming records into 1s 
batches


views	
  =	
  readStream("http:...",	
  "1s")	
  	
  

ones	
  =	
  views.map(ev	
  =>	
  (ev.url,	
  1))	
  

counts	
  =	
  ones.runningReduce((x,y)	
  =>	
  x+y)	
  

creating a DStream
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Fine-grained Lineage

Track fine-grained operation 
lineage


Datasets are periodically 
checkpointed

» Asynchronously to prevent 

long lineages
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Use lineage to recompute 
lost partitions


Datasets in different batches 
recomputed in parallel


Partitions within a dataset 
also recomputed in parallel
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Parallel Fault Recovery




How much faster than Upstream Backup?

Recovery time = time to recompute & catch up

» Depends on available resources in the cluster

» Lower system load before failure allows faster recovery 
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Parallel Straggler Recovery

Straggler mitigation techniques

» Detect slow tasks (e.g. 2X slower than other tasks)

» Speculatively launch more copies of the tasks in 

parallel on other machines





Mask the impact of slow nodes on the 
progress of the  system




Evaluation




Spark Streaming

Implemented on top of Spark*

» Supports in-memory storage and recovery via 

lineage




Numerous performance optimization





[ *Resilient Distributed Datasets - NSDI, 2012 ]




How fast is Spark Streaming?

Can process 60M records/second on 


100 nodes at 1 second latency

Tested with 100 4-core EC2 instances and 100 streams of text
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Fault Recovery

Recovery time improves with more frequent 
checkpointing and more nodes
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Straggler Mitigation

Speculative execution of slow tasks mask the 
effect of stragglers 




0.55 0.54 

3.02 2.40 

1.00 
0.64 

0.0 

1.0 

2.0 

3.0 

4.0 

WordCount Grep 

B
at

ch
 P

ro
ce

ss
in

g 
Ti

m
e 

(s
) 

No straggler Straggler, no speculation 

Straggler, with speculation 



Unification 

Spark + SprakStreaming unifies

» Batch 

» Interactive

» Streaming


Combine live data streams with historic data

liveCounts.join(historicCounts).map(...)	
  

Interactively query live streams



liveCounts.slice(“21:00”,	
  “21:05”).count()






Batch


Interactive
 Streaming


Spark




Summary

Large scale streaming systems must handle 
failures and stragglers

Discretized Streams model streaming 
computation as series of batch jobs

» Naturally exploit parallelism in streams

» Scales to 100 nodes with 1 second latency

» Recovers from failures and stragglers very fast


Spark Streaming is open source spark-project.org

» Used in production by ~10 organizations!












Exciting Future Work

Trade between latency and throughput by 
dynamically adjusting batch size

Partial computation to handle tight latency

» Don’t wait for stragglers

» Expose partially executed DAG

» (Eventually) update results when straggler finish 


Dynamic optimization of execution plan

» Use measurements from previous job to optimize 

execution of next job



