Scaling Big Data Processing with Utility-aware Distributed Data Partitioning

Prof. Dr. Ling Liu
CERCS, School of CS
Georgia Institute of Technology

http://www.istc-cc.cmu.edu/
Contributing Students

• Students on this project
 ▫ Kisung Lee (ISTC GRA)
 ▫ Emre Yigitoglu
 ▫ Qi Zhang
 ▫ Yang Zhou

• Related Publications
Outline

- Graph Models for Big Data
- Graph Queries v.s. Iterative graph algorithms
- Customizable Distributed Graph Partitioning Framework for Graph Queries
- Ongoing/Future Work
Data grows faster than intelligence

Amount of data to Analyze

Area of Need and opportunities

Ability for humans to analyze data

Big Data Services Growth

39% compound annual growth rate

Billions $

2012 2013 2014 2015

Big Data Software Growth

34% compound annual growth rate

Billions $

2012 2013 2014 2015

More Content

More Devices

More Consumption

More demand for New & Better Information

Data grows faster than intelligence

Ability for humans to analyze data

Amount of data to Analyze

Area of Need and opportunities

Big Data Services Growth

39% compound annual growth rate

Billions $

2012 2013 2014 2015

Big Data Software Growth

34% compound annual growth rate

Billions $

2012 2013 2014 2015

• **Graph abstractions**
 - popular data structure to analyze large and complex datasets
 - graph mining can derive implicit/hidden spatial-temporal correlations among data objects

• **Many applications** can benefit from graph abstractions and graph analysis
 - Internet, Social networks, Semantic Web (RDF), sensor networks, petascale simulation

• **Challenges**
 - data size (volume), heterogeneity (variety), velocity and data quality
 - Problem complexity and Computation complexity
• **Two broad classes of problems:**
 - **Graph queries** to find matchings (e.g., subgraph matchings)
 - **Iterative Algorithms** to find clusters, orderings, paths, patterns, ...

• **Graph Kernel**
 - traversal, shortest path algorithms, spanning tree algorithms, topological sort, ...

• **Many factors can influence the choices of graph analytic algorithms and performance optimization techniques**
 - graph sparsity (edge/vertex ratio), diameter, graph heterogeneity, vertex degree distribution, directed/undirected, simple/multi/hyper graph, problem-specific or domain specific characteristics
Common Techniques

- **Compression**
 - Compact storage on disk and compact data structure in memory

- **Data placement (disk, memory)**
 - Balance computation with storage
 - Maximize sequential access and minimize random access to edges and/or vertices

- **Indexing (vertex, edge)**
 - Utilizing sequential access to reduce unnecessary random access

- **Caching (multiple levels)**
 - Performance gain for repeated vertex/edge access

- **Parallel Computation (multiple levels)**
 - Multi-threads, Multi-cores, Disk and memory optimization, Cluster-computing
 - Minimizing parallel overhead (minimizing communications & maximize local computation)
Scaling Graph Analytics: **Iterative Algorithms**

- **Indexing (hash index on source vertex)**
 - Pregel (SIGMOD 2010), GraphChi (ODSI 2012), X-Stream (SOSP 2013)

- **Data Placement/Partition**
 - Disk placement (GraphChi, Pregel)
 - Memory placement (GraphChi, Pregel, X-Stream)
 - Locality (balance computation with storage)
 - Vertex centric, disk-resident shards and streaming shards (GraphChi)
 - Edge centric, memory-constrained streaming partitions (X-Stream)

- **Caching (memory, SSD)**
 - X-Stream (SOSP 2013) (vertex and edge level)

- **Parallel Processing**
 - Data partitioning (vertex or edge)
 - Bulk Synchronous Parallel (BSP) programming model (local computation, communication, barrier synchronization)
 - Minimizing communications, minimizing overhead of barriers by overlapping communication w/ computation
Scaling Graph Analytics: Graph Queries

- **Indexing** (source vertex, edge, destination vertex)
 - RDF-3X (VLDB 2010), BitMat (WWW 2011), TripleBit (VLDB 2013)

- **Compression** (vertices, edges)
 - RDF stores, some graph databases

- **Data Placement**
 - Disk placement (index permutation)
 - Memory placement (sequential access + Index based random access)

- **Caching**
 - Query level

- **Parallel Processing**
 - Data partitioning (vertex, edge)
 - Maximizing parallelism while minimizing communication overhead
Graph pattern queries are subgraph matching problems
 ▫ One of the most fundamental graph operations

Executing a graph pattern query
 ▫ Find a set of subgraphs in a given graph, which match the given graph query pattern if we can substitute the query variables with vertices and edges in the graph.
 ▫ Variables are denoted by a prefix “?”

Q4: (?x, l_3, ?z), (?x, l_6, ?y), (?y, l_4, ?z), (?z, l_1, ?a)
• Graph datasets often exhibit **higher data correlations**
 ▫ Entities (vertices) are **correlated** through both direct and indirect links (edges)
 ▫ High **heterogeneity**
 • heterogeneous types of entities (vertices)
 • heterogeneous types of links (edges)
 ▫ Highly **skewed distribution** (some high degree vertices, many low degree vertices)

• Graph computations often **exceed the processing capacity** of conventional hardware, software systems and tools
 ▫ Intermediate results size exceeds the available memory
 ▫ Fail to deliver the computation within acceptable latency
 • Time complexity with respect to Disk IO, Network IO
Demand **partitioning** a big graph into small partitions and **distributing** the partitions over a cluster of worker nodes

Existing Graph Partitioning Algorithms
- **Random** Partitioning
 - Well-balanced but high overhead for most graph computations due to a large amount of cross node coordination
- **Hash** Partitioning
 - Poor performance for many graph operations due to high overhead of cross node coordination and data shipping.
- **Min-Cut** Partitioning
 - High partitioning overhead

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#vertices</th>
<th>#edges</th>
<th>avg. #out</th>
<th>avg. #in</th>
<th>METIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freebase</td>
<td>51,295,293</td>
<td>100,692,511</td>
<td>4.41</td>
<td>2.11</td>
<td>> 26 hours</td>
</tr>
<tr>
<td>DBLP</td>
<td>25,901,515</td>
<td>56,704,672</td>
<td>16.66</td>
<td>2.39</td>
<td>> 7 hours</td>
</tr>
</tbody>
</table>
Our Approach

- **VB-Partitioner**: a customizable distributed graph partitioning framework
 - **Goal**: improve distributed graph processing efficiency by
 - maximizing intra-partition (local) processing capacity and
 - minimizing inter-partition communication cost (cross-worker coordination and data shipping)

- **Main Features**
 - **Data Partitioning**
 - Constructing **Vertex Blocks** to capture general graph processing locality
 - Constructing **k-hop Extended Vertex Blocks** to distribute vertex blocks with better query locality
 - **Partitions a graph by grouping** its Vertex Blocks based on structural correlation to maximize parallelism in graph processing
 - Introduce **optimization** techniques to reduce the size of each partition

 - **Computation Partitioning**:
 - **Partition-aware** processing of graph queries with maximum parallelism while minimizing inter-partition communication overhead
Constructing Vertex Blocks (VB)

- **Vertex Block (VB)**
 - Consists of an anchor vertex and its one-hop vertices and edges connected to the anchor vertex
 - We call the one-hop neighbor vertices the affiliated vertices.
 - We place the whole VB (its vertices and edges) in the same partition

- **Three types** of vertex blocks to capture general graph processing locality
 - **Out-VB**: include only out-edges and the corresponding affiliated vertices
 - **In-VB**: include only in-edges and the corresponding affiliated vertices
 - **Bi-VB**: include all connected edges and the corresponding affiliated vertices
Extended Vertex Blocks (EVBs)

- **K-hop Extended Vertex block (EVB)**
 - Consists of an anchor vertex and vertices and edges which are reachable in k-hops from its anchor vertex.
 - When k=1, an EVB is a VB.
 - Can be seen as an extension of an VB with the same anchor vertex by k-hop neighbor-based expansion.

- **Three types** of EVBs to distribute vertex blocks with access locality
 - Defined in terms of which direction the EVB is expanded from its VB: Out-EVB, In-EVB, Bi-EVB
• **K-hop extended vertex blocks**
 - K is system supplied by default and can be tuned by users
 - Larger K → high degree of edge replication
 - K=1 → Vertex Block
 • No edge replication
 - K>1 Extended Vertex Blocks
 • Edge replication (in-edge, out-edge and bi-direction)
 • K=3 sufficient for queries over most RDF datasets
Mapping VBs/EVBs to Partitions

- **Strategies**
 - Each VB/EVB should be mapped/placed to a partition
 - **Highly correlated** VBs/EVBs should be mapped/placed to the same partition

- **Goals**
 - **Balanced partitions**
 - One big partition in the imbalanced partitions can be a performance bottleneck
 - **Reduced replication**
 - Smaller partitions usually mean faster local query processing
 - We need to group EVBs sharing many edges
 - **Fast grouping time**
 - To reduce the overhead of partitioning
VB/EVB Grouping and Optimizations

• Grouping Methods
 ▫ **Random** Grouping/Placement
 ▫ **Hash** based Grouping/Placement
 • Hash on anchor vertex of EVBs
 ▫ **Min-cut** Graph based Grouping/Placement

• Domain Specific Optimizations
 ▫ **Selective k-hop Edge Replication**
 • only replicate edges along selective branches
 ▫ **Prefix based pre-partition optimization**
 • Prefix-based hashing prior to constructing vertex blocks
 • Example: URI-hierarchy for RDF, pages from the same domain
Partition-aware Query Processing

- Given a query Q over the k-hop VB-partitioning (in-edge, out-edge or bi-direction), three steps for query processing:
 - Determine whether Q can be processed at each worker node using intra-partition processing directly
 - compute the (in-edge, out-edge or bi-direction) radius of the query
 - if radius(Q)\(\leq\)K, then Q can be processed using intra-partition processing directly.
 - If not, decompose Q into subqueries such that all subqueries can be processed using intra-partition processing.
 - Merging the intra-partition processing results using Hadoop MapReduce.
Experiments

- **Settings**
 - 21 machines (one is the master) on Emulab
 - Each has 12GB RAM, one Xeon E5530, two 250GB disks
 - Hadoop version 1.0.4
 - RDF-3X version 0.3.5 as a local graph processing engine
 - METIS version 5.0.2 for minimum cut-based VB grouping

- **Datasets**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#vertices</th>
<th>#edges</th>
<th>avg. #out</th>
<th>avg. #in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freebase</td>
<td>51,295,293</td>
<td>100,692,511</td>
<td>4.41</td>
<td>2.11</td>
</tr>
<tr>
<td>DBLP</td>
<td>25,901,515</td>
<td>56,704,672</td>
<td>16.66</td>
<td>2.39</td>
</tr>
<tr>
<td>DBpedia</td>
<td>104,351,705</td>
<td>287,957,640</td>
<td>11.62</td>
<td>2.82</td>
</tr>
<tr>
<td>LUBM-267M</td>
<td>65,724,613</td>
<td>266,947,598</td>
<td>6.15</td>
<td>8.27</td>
</tr>
<tr>
<td>LUBM-534M</td>
<td>131,484,665</td>
<td>534,043,573</td>
<td>6.15</td>
<td>8.27</td>
</tr>
<tr>
<td>LUBM-1068M</td>
<td>262,973,129</td>
<td>1,068,074,675</td>
<td>6.15</td>
<td>8.27</td>
</tr>
<tr>
<td>SP2B-100M</td>
<td>55,182,878</td>
<td>100,000,380</td>
<td>5.61</td>
<td>2.11</td>
</tr>
<tr>
<td>SP2B-200M</td>
<td>111,027,855</td>
<td>200,000,007</td>
<td>5.49</td>
<td>2.08</td>
</tr>
<tr>
<td>SP2B-500M</td>
<td>280,908,393</td>
<td>500,000,912</td>
<td>5.31</td>
<td>2.04</td>
</tr>
</tbody>
</table>
EVB construction and grouping are implemented using Hadoop cluster

- Loading time indicates partition loading time of the local graph engine (RDF-3X)
- Minimum cut-based grouping includes input conversion to METIS input format and METIS running step. The input conversion is implemented also using Hadoop cluster

Significantly reduce the graph loading time compared to single server-based approach

Out-edge VBs are faster than in-edge VBs because they are well-balanced
Show the huge benefit of **intra-partition** processing
- For star-like queries, it is usually fast in our partitions
- For complex queries, 2-out has the best performance
 - Except in Q7 which requires **inter-partition** processing
 - Intermediate result size: 1.2GB >> final result size: 907B
 - But still much faster than random partitioning
Ongoing / Future Work

- How to handle updates efficiently

- How to support iterative graph algorithms efficiently
 - Shared Memory
 - Reducing parallel overhead of barriers
 - Distributed Memory
 - Optimizing message buffer sizes, #messages
 - Overlapping communication w/ computation
Questions