Scaling Big Data Processing with Utility-

Prof. Dr. Ling Liu CERCS, School of CS Georgia Institute of Technology

aware Distributed Data Partitioning

Intel Science & Technology

http://www.istc-cc.cmu.edu/

Center for Cloud Computing

Contributing Students

- Students on this project
 - Kisung Lee (ISTC GRA)
 - Emre Yigitoglu
 - Qi Zhang
 - Yang Zhou
- Related Publications
 - VLDB 2014, IEEE SC 2013, VLDB 2013, ACM
 SIGKDD2013, IEEE ICWS 2013, IEEE Cloud 2013

Outline

- Graph Models for Big Data
- Graph Queries v.s. Iterative graph algorithms
- Customizable Distributed Graph Partitioning Framework for Graph Queries
- Ongoing/Future Work

Data grows faster than intelligence

IDC Market Analysis, Worldwide Big Data Technology and Services 2012-2015 Forecast, 2012

Large Scale Data Analysis

Graph abstractions

- popular data structure to analyze large and complex datasets
- graph mining can derive implicit/hidden spatialtemporal correlations among data objects
- Many applications can benefit from graph abstractions and graph analysis
 - Internet, Social networks, Semantic Web (RDF), senor networks, petascale simulation

Challenges

- data size (volume), heterogeneity (variety), velocity and data quality
- Problem complexity and Computation complexity

Characterizing Graph Computation

- Two broad classes of problems:
 - **Graph queries** to find matchings (e.g., subgraph matchings)
 - **Iterative Algorithms** to find clusters, orderings, paths, patterns, ...
- Graph Kernel
 - traversal, shortest path algorithms, spanning tree algorithms, topological sort, ...
- Many factors can influence the choices of graph analytic algorithms and performance optimization techniques
 - graph sparsity (edge/vertex ratio), diameter, graph heterogeneity, vertex degree distribution, directed/undirected, simple/multi/hyper graph, problem-specific or domain specific characteristics

Scaling Graph Analysis

Common Techniques

Compression

• Compact storage on disk and compact data structure in memory

Data placement (disk, memory)

- Balance computation with storage
- maximize sequential access and minimize random access to edges and/or vertices

Indexing (vertex, edge)

• utilizing sequential access to reduce unnecessary random access

• Caching (multiple levels)

- Performance gain for repeated vertex/edge access
- Parallel Computation (multiple levels)
 - Multi-threads, Multi-cores, Disk and memory optimization, Clustercomputing
 - Minimizing parallel overhead (minimizing communications & maximize local computation)

Scaling Graph Analytics: Iterative Algorithms

- Indexing (hash index on source vertex)
 - Pregel (SIGMOD 2010), GraphChi (ODSI 2012), X-Stream (SOSP 2013)

Data Placement/Partition

- Disk placement (GraphChi, Pregel)
- Memory placement (GraphChi, Pregel, X-Stream)
- Locality (balance computation with storage)
 - Vertex centric, disk-resident shards and streaming shards (GraphChi)
 - Edge centric, memory-constrained streaming partitions (X-Stream)

• Caching (memory, SSD)

• X-Stream (SOSP 2013) (vertex and edge level)

Parallel Processing

- Data partitioning (vertex or edge)
- Bulk Synchronous Parallel (BSP) programming model (local computation, communication, barrier synchronization)
- Minimizing communications, minimizing overhead of barriers by overlapping communication w/ computation

Scaling Graph Analytics: Graph Queries

- Indexing (source vertex, edge, destination vertex)
 - RDF-3X (VLDB 2010), BitMat (WWW 2011), TripleBit (VLDB 2013)

Compression (vertices, edges)

• RDF stores, some graph databases

Data Placement

- Disk placement (index permutation)
- Memory placement (sequential access + Index based random access)

Caching

• query level

Parallel Processing

- data partitioning (vertex, edge)
- maximizing parallelism while minimizing communication overhead

Graph Queries (Pattern matching)

- Graph pattern queries are subgraph matching problems
 - One of the most fundamental graph operations
- Executing a graph pattern query
 - Find a set of **subgraphs** in a given graph, which match the given graph query pattern if we can substitute the query variables with vertices and edges in the graph.
 - Variables are denoted by a prefix "?"

Processing Graph Queries: Challenges

- Graph datasets often exhibit **higher data correlations**
 - Entities (vertices) are correlated through both direct and indirect links (edges)
 - High heterogeneity
 - heterogeneous types of entities (vertices)
 - heterogeneous types of links (edges)
 - Highly skewed distribution (some high degree vertices, many low degree vertices)
- Graph computations often **exceed the processing capacity** of conventional hardware, software systems and tools
 - Intermediate results size exceeds the available memory
 - Fail to deliver the computation within acceptable latency
 - Time complexity with respect to Disk IO, Network IO

Distributed Processing of Graph Queries

- Demand **partitioning** a big graph into small partitions and **distributing** the partitions over a cluster of worker nodes
- **Existing** Graph Partitioning Algorithms
 - Random Partitioning
 - Well-balanced but high overhead for most graph computations due to a large amount of cross node coordination
 - Hash Partitioning
 - Poor performance for many graph operations due to high overhead of cross node coordination and data shipping.
 - Min-Cut Partitioning
 - High partitioning overhead

Dataset	#vertices	#edges	avg. #out	avg. #in	METIS
Freebase	51,295,293	100,692,511	4.41	2.11	> 26 hours
DBLP	25,901,515	56,704,672	16.66	2.39	> 7 hours

12

Our Approach

- **VB-Partitioner:** a customizable distributed graph partitioning framework
 - **Goal:** improve distributed graph processing efficiency by
 - maximizing intra-partition (local) processing capacity and
 - **minimizing** inter-partition communication cost (cross-worker coordination and data shipping)

Main Features

Data Partitioning

- Constructing Vertex Blocks to capture general graph processing locality
- Constructing **k-hop Extended Vertex Blocks** to distribute vertex blocks with better query locality
- **Partitions a graph by grouping** its Vertex Blocks based on structural correlation to maximize parallelism in graph processing
- Introduce **optimization** techniques to reduce the size of each partition

Computation Partitioning:

• **Partition-aware** processing of graph queries with maximum parallelism while mimimizing inter-partition communication overhead

Constructing Vertex Blocks (VB)

- Vertex Block (VB)
 - Consists of an anchor vertex and its one-hop vertices and edges connected to the anchor vertex
 - We call the one-hop neighbor vertices the **affiliated** vertices.
 - We place the **whole VB** (its vertices and edges) in the **same** partition
- **Three types** of vertex blocks to capture general graph processing locality
 - **Out**-VB: include only out-edges and the corresponding affiliated vertices
 - **In**-VB: include only in-edges and the corresponding affiliated vertices
 - Bi-VB: include all connected edges and the corresponding affiliated vertices

Extended Vertex Blocks (EVBs)

- K-hop Extended Vertex block (EVB)
 - Consists of an anchor vertex and vertices and edges which are reachable in khops from its anchor vertex.
 - When k=1, an EVB is a VB.
 - Can be seen as an **extension** of an VB with the same anchor vertex by k-hop neighborbased expansion.
- **Three types** of EVBs to distribute vertex blocks with access locality
 - Defined in terms of which direction the EVB is expanded from its VB: Out-EVB, In-EVB, Bi-EVB

Extended Vertex Blocks (EVBs)

- K-hop extended vertex blocks
 - K is system supplied by default and can be tuned by users
 - Larger $K \rightarrow$ high degree of edge replication
 - K=1 \rightarrow Vertex Block
 - No edge replication
 - K>1 Extended Vertex Blocks
 - Edge replication (in-edge, out-edge and bi-direction)
 - K=3 sufficient for queries over most RDF datasets

Mapping VBs/EVBs to Partitions

- Strategies
 - Each VB/EVB should be mapped/ placed to a partition
 - Highly correlated VBs/EVBs should be mapped/placed to the same partition
- Goals
 - Balanced partitions
 - One big partition in the imbalanced partitions can be a performance bottleneck
 - Reduced replication
 - Smaller partitions usually mean faster local query processing
 - We need to group EVBs sharing many edges
 - Fast grouping time
 - To reduce the overhead of partitioning

EVB1

EVB2

Same partition

Different partitions

VB/EVB Grouping and Optimizations

- Grouping Methods
 - Random Grouping/Placement
 - Hash based Grouping/Placement
 - Hash on anchor vertex of EVBs
 - Min-cut Graph based Grouping/Placement
- Domain Specific Optimizations
 - Selective k-hop Edge Replication
 - only replicate edges along selective branches
 - Prefix based pre-partition optimization
 - Prefix-based hashing prior to constructing vertex blocks
 - Example: URI-hierarchy for RDF, pages from the same domain

Partition-aware Query Processing

- Given a query Q over the k-hop VB-partitioning (inedge, out-edge or bi-direction), three steps for query processing:
 - Determine whether Q can be processed at each worker node using intra-partition processing directly
 - ➤ compute the (in-edge, out-edge or bi-direction) radius of the query
 - ➢if radius(Q)<=K, then Q can be processed using intra-partition processing directly.
 - If not, decompose Q into subqueries such that all subqueries can be processed using intra-partition processing.
 - Merging the intra-partition processing results using Hadoop MapReduce.

Experiments

• Settings

- 21 machines (one is the master) on Emulab
 - Each has 12GB RAM, one Xeon E5530, two 250GB disks
- Hadoop version 1.0.4
- RDF-3X version 0.3.5 as a local graph processing engine
- METIS version 5.0.2 for minimum cut-based VB grouping

• Datasets

Dataset	#vertices	#edges	avg. #out	avg. #in
Freebase	51,295,293	100,692,511	4.41	2.11
DBLP	25,901,515	56,704,672	16.66	2.39
DBpedia	104,351,705	287,957,640	11.62	2.82
LUBM-267M	65,724,613	266,947,598	6.15	8.27
LUBM-534M	131,484,665	534,043,573	6.15	8.27
LUBM-1068M	262,973,129	1,068,074,675	6.15	8.27
SP2B-100M	55,182,878	100,000,380	5.61	2.11
SP2B-200M	111,027,855	200,000,007	5.49	2.08
SP2B-500M	280,908,393	500,000,912	5.31	2.04

Partitioning and Loading Time

- EVB construction and grouping are implemented using Hadoop cluster
 - Loading time indicates partition loading time of the local graph engine (RDF-3X)
 - Minimum cut-based grouping includes input conversion to METIS input format and METIS running step. The input conversion is implemented also using Hadoop cluster

- ✓ Significantly reduce the graph loading time compared to single serverbased approach
- Out-edge VBs are faster than inedge VBs because they are wellbalanced

Effect of different types of EVBs on Performance

- Show the huge benefit of **intra-partition** processing
 - For star-like queries, it is usually fast in our partitions
 - For complex queries, 2-out has the best performance
 - Except in Q7 which requires **inter**-partition processing
 - Intermediate result size: 1.2GB >> final result size: 907B
 - But still much faster than random partitioning

Ongoing / Future Work

- How to handle updates efficiently
- How to support iterative graph algorithms efficiently
 - Shared Memory
 - Reducing parallel overhead of barriers
 - Distributed Memory
 - Optimizing message buffer sizes, #messages
 - overlapping communication w/ computation

