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Outline 

• Graph Models for Big Data 

• Graph Queries v.s. Iterative graph 
algorithms 

• Customizable Distributed Graph 
Partitioning Framework for Graph 
Queries 

• Ongoing/Future Work 



 
IDC Market Analysis, Worldwide Big Data Technology and Services 2012–2015 Forecast , 2012 
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Big Data Software Growth 
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Data grows faster than intelligence 
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•  Graph abstractions  
�  popular data structure to analyze large and complex 

datasets   
�  graph mining can derive implicit/hidden spatial-

temporal correlations among data objects  

•  Many applications can benefit from graph 
abstractions and graph analysis 
�  Internet, Social networks, Semantic Web (RDF), 

senor networks, petascale simulation 

•  Challenges 
�  data size (volume), heterogeneity (variety), velocity 

and data quality 
�  Problem complexity and Computation complexity 

 

Large Scale Data Analysis 



•  Two broad classes of problems: 
�  Graph queries to find matchings (e.g., subgraph matchings) 
�  Iterative Algorithms to find clusters, orderings, paths, 

patterns, …  
 
•  Graph Kernel 

�  traversal, shortest path algorithms, spanning tree algorithms, 
topological sort, … 

•  Many factors can influence the choices of graph analytic 
algorithms and performance optimization techniques 
�  graph sparsity (edge/vertex ratio), diameter, graph heterogeneity, 

vertex degree distribution, directed/undirected, simple/multi/hyper 
graph, problem-specific or domain specific characteristics 

 

Characterizing Graph Computation 



Common Techniques 
•  Compression 

�  Compact storage on disk and compact data structure in memory 
•  Data placement (disk, memory) 

�  Balance computation with storage  
�  maximize sequential access and minimize random access to 

edges and/or vertices  
•  Indexing (vertex, edge) 

�  utilizing sequential access to reduce unnecessary random access 
•  Caching (multiple levels) 

•  Performance gain for repeated vertex/edge access 
•  Parallel Computation (multiple levels) 

�  Multi-threads, Multi-cores, Disk and memory optimization, Cluster-
computing 

�  Minimizing parallel overhead (minimizing communications & 
maximize local computation)  

 

Scaling Graph Analysis 



•  Indexing (hash index on source vertex) 
�  Pregel (SIGMOD 2010), GraphChi (ODSI 2012), X-Stream (SOSP 2013) 

•  Data Placement/Partition 
�  Disk placement (GraphChi, Pregel) 
�  Memory placement (GraphChi, Pregel, X-Stream) 
�  Locality (balance computation with storage)  
▫  Vertex centric, disk-resident shards and streaming shards 

(GraphChi) 
�  Edge centric, memory-constrained streaming partitions (X-Stream) 

•  Caching (memory, SSD) 
�  X-Stream (SOSP 2013) (vertex and edge level) 

•  Parallel Processing 
•  Data partitioning (vertex or edge) 
•  Bulk Synchronous Parallel (BSP) programming model (local computation, 

communication, barrier synchronization) 
•  Minimizing communications, minimizing overhead of barriers by overlapping 

communication w/ computation 

 

Scaling Graph Analytics: Iterative Algorithms 
 



Scaling Graph Analytics: Graph Queries 

•  Indexing (source vertex, edge, destination vertex) 
�  RDF-3X (VLDB 2010), BitMat (WWW 2011),TripleBit (VLDB 2013) 

•  Compression (vertices, edges) 
�  RDF stores, some graph databases 

•  Data Placement  
�  Disk placement (index permutation) 

�  Memory placement (sequential access + Index based random access) 
•  Caching  

•  query level 

•  Parallel Processing 
�  data partitioning (vertex, edge) 
�  maximizing parallelism while minimizing communication overhead 



•  Graph pattern queries are subgraph matching problems 
▫  One of the most fundamental graph operations 

•  Executing a graph pattern query  
▫  Find a set of subgraphs in a given graph, which match the 

given graph query pattern if we can substitute the query 
variables with vertices and edges in the graph.  
▫  Variables are denoted by a prefix “?” 

Graph Queries (Pattern matching) 
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•  Graph datasets often exhibit higher data correlations  
▫  Entities (vertices) are correlated through both direct and 

indirect links (edges) 
▫  High heterogeneity  

�  heterogeneous types of entities (vertices) 
�  heterogeneous types of links (edges) 

▫  Highly skewed distribution (some high degree vertices, 
many low degree vertieces) 

•  Graph computations often exceed the processing 
capacity of conventional hardware, software systems 
and tools 
▫  Intermediate results size exceeds the available memory  
▫  Fail to deliver the computation within acceptable latency 

�  Time complexity with respect to Disk IO, Network IO 

Processing Graph Queries: Challenges 



•  Demand partitioning a big graph into small partitions 
and distributing the partitions over a cluster of worker 
nodes 

•  Existing Graph Partitioning Algorithms 
▫  Random Partitioning 

�  Well-balanced but high overhead for most graph 
computations due to a large amount of cross node 
coordination 

▫  Hash Partitioning 
�  Poor performance for many graph operations due to high 

overhead of cross node coordination and data shipping. 
▫  Min-Cut Partitioning 

�  High partitioning overhead 

Distributed Processing of Graph Queries 
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Dataset  #vertices  #edges  avg. #out  avg. #in  METIS 

Freebase  51,295,293  100,692,511  4.41  2.11  > 26 hours 

DBLP  25,901,515  56,704,672  16.66  2.39  > 7 hours  



•  VB-Partitioner: a customizable distributed graph partitioning 
framework 
▫  Goal: improve distributed graph processing efficiency by  

�  maximizing intra-partition (local) processing capacity and  
�  minimizing inter-partition communication cost (cross-worker 

coordination and data shipping) 

▫  Main Features   
Ø Data Partitioning 

�  Constructing Vertex Blocks to capture general graph processing locality 
�  Constructing k-hop Extended Vertex Blocks to distribute vertex blocks with 

better query locality 
�  Partitions a graph by grouping its Vertex Blocks based on structural 

correlation to maximize parallelism in graph processing 
�  Introduce optimization techniques to reduce the size of each partition 

Ø Computation Partitioning:  
•  Partition-aware processing of graph queries with maximum parallelism while 

mimimizing inter-partition communication overhead 

Our Approach 



•  Vertex Block (VB) 
▫  Consists of an anchor vertex and its one-hop vertices and edges 

connected to the anchor vertex 
�  We call the one-hop neighbor vertices the affiliated vertices. 

▫  We place the whole VB (its vertices and edges) in the same partition 
•  Three types of vertex blocks to capture general graph 

processing locality 
▫  Out-VB: include only out-edges and the corresponding affiliated 

vertices 
▫  In-VB: include only in-edges and the corresponding affiliated vertices 
▫  Bi-VB: include all connected edges and the corresponding affiliated 

vertices 

Constructing Vertex Blocks (VB) 
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•  K-hop Extended Vertex block (EVB) 
▫  Consists of an anchor vertex and vertices and edges which are reachable in k-

hops from its anchor vertex.  
▫  When k=1, an EVB is a VB.  
▫  Can be seen as an extension of an VB with the same anchor vertex by k-hop neighbor-

based expansion. 
•  Three types of EVBs to distribute vertex blocks with access locality 
▫  Defined in terms of which direction the EVB is expanded from its VB: Out-EVB, In-

EVB, Bi-EVB 

Extended Vertex Blocks (EVBs) 
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• K-hop extended vertex blocks 
▫  K is system supplied by default and can be tuned by 

users 
▫  Larger K à high degree of edge replication 
▫  K=1 à Vertex Block  
�  No edge replication  
▫  K>1 Extended Vertex Blocks 
�  Edge replication (in-edge, out-edge and bi-direction) 
�  K=3 sufficient for queries over most RDF datasets 

Extended Vertex Blocks (EVBs) 

16 
[Kisung Lee, Ling Liu, SuperComputingC2013, VLDB2014 



•  Strategies 
▫  Each VB/EVB should be mapped/

placed to a partition 
▫  Highly correlated VBs/EVBs 

should be mapped/placed to the 
same partition 

•  Goals 
▫  Balanced partitions 

�  One big partition in the imbalanced 
partitions can be a performance 
bottleneck 

▫  Reduced replication 
�  Smaller partitions usually mean 

faster local query processing 
�  We need to group EVBs sharing 

many edges 
▫  Fast grouping time 

�  To reduce the overhead of 
partitioning 

 

Mapping VBs/EVBs to Partitions 
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•  Grouping Methods 
▫  Random Grouping/Placement 
▫  Hash based Grouping/Placement 

�  Hash on anchor vertex of EVBs 
▫  Min-cut Graph based Grouping/Placement 

 
•  Domain Specific Optimizations 
▫  Selective k-hop Edge Replication 

�   only replicate edges along selective branches 
▫  Prefix based pre-partition optimization 

�  Prefix-based hashing prior to constructing vertex blocks 
�  Example: URI-hierarchy for RDF, pages from the same domain 

VB/EVB Grouping and Optimizations  

18 
[Kisung Lee, Ling Liu, SuperComputingC2013, VLDB2014 



•  Given a query Q over the k-hop VB-partitioning (in-
edge, out-edge or bi-direction), three steps for query 
processing: 
▫  Determine whether Q can be processed at each worker 

node using intra-partition processing directly 
Ø compute the (in-edge, out-edge or bi-direction) radius of 

the query 
Ø if radius(Q)<=K, then Q can be processed using 

intra-partition processing directly. 
▫  If not, decompose Q into subqueries such that all 

subqueries can be processed using intra-partition 
processing. 
▫  Merging the intra-partition processing results using 

Hadoop MapReduce. 

 
Partition-aware  Query Processing 

[Kisung Lee, Ling Liu, SuperComputingC2013, VLDB2014 



•  Settings 
▫  21 machines (one is the master) on Emulab 

�  Each has 12GB RAM, one Xeon E5530, two 250GB disks 
▫  Hadoop version 1.0.4 
▫  RDF-3X version 0.3.5 as a local graph processing engine 
▫  METIS version 5.0.2 for minimum cut-based VB grouping 

•  Datasets 

Experiments 
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Dataset  #vertices  #edges  avg. #out  avg. #in  

Freebase  51,295,293  100,692,511  4.41  2.11  

DBLP  25,901,515  56,704,672  16.66  2.39  

DBpedia 104,351,705 287,957,640 11.62 2.82 

LUBM-267M 65,724,613 266,947,598 6.15 8.27 

LUBM-534M 131,484,665 534,043,573 6.15 8.27 

LUBM-1068M 262,973,129 1,068,074,675 6.15 8.27 

SP2B-100M 55,182,878 100,000,380 5.61 2.11 

SP2B-200M 111,027,855 200,000,007 5.49 2.08 

SP2B-500M 280,908,393 500,000,912 5.31 2.04 



•  EVB construction and grouping are implemented using Hadoop cluster 
▫  Loading time indicates partition loading time of the local graph engine 

(RDF-3X)  
▫  Minimum cut-based grouping includes input conversion to METIS input 

format and METIS running step. The input conversion is implemented also 
using Hadoop cluster 

Partitioning and Loading Time 
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LUBM-267M 

ü  Significantly 
reduce the graph 
loading time 
compared to 
single server-
based approach 

ü  Out-edge VBs are 
faster than in-
edge VBs because 
they are well-
balanced 



•  Show the huge benefit of intra-partition processing 
▫  For star-like queries, it is usually fast in our partitions 
▫  For complex queries, 2-out has the best performance 

�  Except in Q7 which requires inter-partition processing 
�  Intermediate result size: 1.2GB >> final result size: 907B 
�  But still much faster than random partitioning  

Effect of different types of EVBs on Performance 
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Ongoing / Future Work 

•  How to handle updates efficiently 

•  How to support iterative graph algorithms efficiently 
▫  Shared Memory 

�  Reducing parallel overhead of barriers 
▫  Distributed Memory 

�  Optimizing message buffer sizes, #messages 
�  overlapping communication w/ computation 
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Questions 


