
http://www.istc-cc.cmu.edu/

Scaling	
 Big	
 Data	
 Processing	
 with	
 U4lity-­‐
aware	
 Distributed	
 Data	
 Par44oning	

Prof. Dr. Ling Liu
CERCS, School of CS

Georgia Institute of Technology

•  Students on this project
▫  Kisung Lee (ISTC GRA)
▫  Emre Yigitoglu
▫  Qi Zhang
▫  Yang Zhou

• Related Publications
▫  VLDB 2014, IEEE SC 2013, VLDB 2013, ACM

SIGKDD2013, IEEE ICWS 2013, IEEE Cloud 2013

Contributing Students

Outline

• Graph Models for Big Data

• Graph Queries v.s. Iterative graph
algorithms

• Customizable Distributed Graph
Partitioning Framework for Graph
Queries

• Ongoing/Future Work

IDC Market Analysis, Worldwide Big Data Technology and Services 2012–2015 Forecast , 2012

2.7
3.9

5.1
6.5

0

5

10

2012 2013 2014 2015

B
ill

io
ns

 $
 39%

compound
annual
growth

rate

Big Data Software Growth

1.8
2.5

3.4
4.6

0

2

4

6

2012 2013 2014 2015

B
ill

io
ns

 $
 34%

compound
annual

growth rate

Data grows faster than intelligence

Ability for humans
to analyze data

Amount of data
to Analyze

Area of Need
 and opportunities

[Jack Tang & Darien Nagle, Microsoft APC 2012]

More
Devices

More
Consumption

More
Content

More demand
for New & Better

Information

•  Graph abstractions
�  popular data structure to analyze large and complex

datasets
�  graph mining can derive implicit/hidden spatial-

temporal correlations among data objects

•  Many applications can benefit from graph
abstractions and graph analysis
�  Internet, Social networks, Semantic Web (RDF),

senor networks, petascale simulation

•  Challenges
�  data size (volume), heterogeneity (variety), velocity

and data quality
�  Problem complexity and Computation complexity

Large Scale Data Analysis

•  Two broad classes of problems:
�  Graph queries to find matchings (e.g., subgraph matchings)
�  Iterative Algorithms to find clusters, orderings, paths,

patterns, …

•  Graph Kernel

�  traversal, shortest path algorithms, spanning tree algorithms,
topological sort, …

•  Many factors can influence the choices of graph analytic
algorithms and performance optimization techniques
�  graph sparsity (edge/vertex ratio), diameter, graph heterogeneity,

vertex degree distribution, directed/undirected, simple/multi/hyper
graph, problem-specific or domain specific characteristics

Characterizing Graph Computation

Common Techniques
•  Compression

�  Compact storage on disk and compact data structure in memory
•  Data placement (disk, memory)

�  Balance computation with storage
�  maximize sequential access and minimize random access to

edges and/or vertices
•  Indexing (vertex, edge)

�  utilizing sequential access to reduce unnecessary random access
•  Caching (multiple levels)

•  Performance gain for repeated vertex/edge access
•  Parallel Computation (multiple levels)

�  Multi-threads, Multi-cores, Disk and memory optimization, Cluster-
computing

�  Minimizing parallel overhead (minimizing communications &
maximize local computation)

Scaling Graph Analysis

•  Indexing (hash index on source vertex)
�  Pregel (SIGMOD 2010), GraphChi (ODSI 2012), X-Stream (SOSP 2013)

•  Data Placement/Partition
�  Disk placement (GraphChi, Pregel)
�  Memory placement (GraphChi, Pregel, X-Stream)
�  Locality (balance computation with storage)
▫  Vertex centric, disk-resident shards and streaming shards

(GraphChi)
�  Edge centric, memory-constrained streaming partitions (X-Stream)

•  Caching (memory, SSD)
�  X-Stream (SOSP 2013) (vertex and edge level)

•  Parallel Processing
•  Data partitioning (vertex or edge)
•  Bulk Synchronous Parallel (BSP) programming model (local computation,

communication, barrier synchronization)
•  Minimizing communications, minimizing overhead of barriers by overlapping

communication w/ computation

Scaling Graph Analytics: Iterative Algorithms

Scaling Graph Analytics: Graph Queries

•  Indexing (source vertex, edge, destination vertex)
�  RDF-3X (VLDB 2010), BitMat (WWW 2011),TripleBit (VLDB 2013)

•  Compression (vertices, edges)
�  RDF stores, some graph databases

•  Data Placement
�  Disk placement (index permutation)

�  Memory placement (sequential access + Index based random access)
•  Caching

•  query level

•  Parallel Processing
�  data partitioning (vertex, edge)
�  maximizing parallelism while minimizing communication overhead

•  Graph pattern queries are subgraph matching problems
▫  One of the most fundamental graph operations

•  Executing a graph pattern query
▫  Find a set of subgraphs in a given graph, which match the

given graph query pattern if we can substitute the query
variables with vertices and edges in the graph.
▫  Variables are denoted by a prefix “?”

Graph Queries (Pattern matching)

v3

v12

v4

v1
 v2

v5

v10

v9

v14
v13

v7
 v8

v6
 v11

l1

l1

l1

l1
l1

l1

l2

l3

l4

l3

l4

l3

l6

l6 l6

l3

l8

l7
l9

l9

l8

l4

l11

l3 l10 l6

l5

l1

?x

?z
 ?y

?a

l1
l3 l6

l4

Q4: (?x, l3, ?z),
(?x, l6, ?y), (?y, l4, ?z),
(?z, l1, ?a)

•  Graph datasets often exhibit higher data correlations
▫  Entities (vertices) are correlated through both direct and

indirect links (edges)
▫  High heterogeneity

�  heterogeneous types of entities (vertices)
�  heterogeneous types of links (edges)

▫  Highly skewed distribution (some high degree vertices,
many low degree vertieces)

•  Graph computations often exceed the processing
capacity of conventional hardware, software systems
and tools
▫  Intermediate results size exceeds the available memory
▫  Fail to deliver the computation within acceptable latency

�  Time complexity with respect to Disk IO, Network IO

Processing Graph Queries: Challenges

•  Demand partitioning a big graph into small partitions
and distributing the partitions over a cluster of worker
nodes

•  Existing Graph Partitioning Algorithms
▫  Random Partitioning

�  Well-balanced but high overhead for most graph
computations due to a large amount of cross node
coordination

▫  Hash Partitioning
�  Poor performance for many graph operations due to high

overhead of cross node coordination and data shipping.
▫  Min-Cut Partitioning

�  High partitioning overhead

Distributed Processing of Graph Queries

12

Dataset #vertices #edges avg. #out avg. #in METIS

Freebase 51,295,293 100,692,511 4.41 2.11 > 26 hours

DBLP 25,901,515 56,704,672 16.66 2.39 > 7 hours

•  VB-Partitioner: a customizable distributed graph partitioning
framework
▫  Goal: improve distributed graph processing efficiency by

�  maximizing intra-partition (local) processing capacity and
�  minimizing inter-partition communication cost (cross-worker

coordination and data shipping)

▫  Main Features
Ø Data Partitioning

�  Constructing Vertex Blocks to capture general graph processing locality
�  Constructing k-hop Extended Vertex Blocks to distribute vertex blocks with

better query locality
�  Partitions a graph by grouping its Vertex Blocks based on structural

correlation to maximize parallelism in graph processing
�  Introduce optimization techniques to reduce the size of each partition

Ø Computation Partitioning:
•  Partition-aware processing of graph queries with maximum parallelism while

mimimizing inter-partition communication overhead

Our Approach

•  Vertex Block (VB)
▫  Consists of an anchor vertex and its one-hop vertices and edges

connected to the anchor vertex
�  We call the one-hop neighbor vertices the affiliated vertices.

▫  We place the whole VB (its vertices and edges) in the same partition
•  Three types of vertex blocks to capture general graph

processing locality
▫  Out-VB: include only out-edges and the corresponding affiliated

vertices
▫  In-VB: include only in-edges and the corresponding affiliated vertices
▫  Bi-VB: include all connected edges and the corresponding affiliated

vertices

Constructing Vertex Blocks (VB)

v12
 v13

v7
l1
l3

l6 v7
 v8

Out-VB

v7
 v8

v3
 v4

v7

l3

l4 l4

l3

In-VB v12
 v13

v7

l1 l3

l6

v3
 v4

v7
 v8

l3

l4 l4

l3

Bi-VB Different vertex blocks of v7

•  K-hop Extended Vertex block (EVB)
▫  Consists of an anchor vertex and vertices and edges which are reachable in k-

hops from its anchor vertex.
▫  When k=1, an EVB is a VB.
▫  Can be seen as an extension of an VB with the same anchor vertex by k-hop neighbor-

based expansion.
•  Three types of EVBs to distribute vertex blocks with access locality
▫  Defined in terms of which direction the EVB is expanded from its VB: Out-EVB, In-

EVB, Bi-EVB

Extended Vertex Blocks (EVBs)

15

v12

v13

v7
l1

l3
l6

v7
 v8

v10

l1 l8

v5

v14

v11

l4

l7 l9

l4

l11

2-hop Out-EVB of v7

v7
 v8

v3

v4

v7

l3

l4 l4

l3
v9
l6

l6

2-hop In-EVB of v7

v12
 v13

v7
l1 l3
l6

v3
 v4

v7
 v8

l3

l4 l4

l3

v1

v6

l1

l6

l1

l6

l1

l1
v10

v11
l3

l8

v5

v9

v14

l7 l9

l4

l11

l6

2-hop Bi-EVB of v7

• K-hop extended vertex blocks
▫  K is system supplied by default and can be tuned by

users
▫  Larger K à high degree of edge replication
▫  K=1 à Vertex Block
�  No edge replication
▫  K>1 Extended Vertex Blocks
�  Edge replication (in-edge, out-edge and bi-direction)
�  K=3 sufficient for queries over most RDF datasets

Extended Vertex Blocks (EVBs)

16
[Kisung Lee, Ling Liu, SuperComputingC2013, VLDB2014

•  Strategies
▫  Each VB/EVB should be mapped/

placed to a partition
▫  Highly correlated VBs/EVBs

should be mapped/placed to the
same partition

•  Goals
▫  Balanced partitions

�  One big partition in the imbalanced
partitions can be a performance
bottleneck

▫  Reduced replication
�  Smaller partitions usually mean

faster local query processing
�  We need to group EVBs sharing

many edges
▫  Fast grouping time

�  To reduce the overhead of
partitioning

Mapping VBs/EVBs to Partitions

17

EVB1 EVB2

Same partition

Different partitions

•  Grouping Methods
▫  Random Grouping/Placement
▫  Hash based Grouping/Placement

�  Hash on anchor vertex of EVBs
▫  Min-cut Graph based Grouping/Placement

•  Domain Specific Optimizations
▫  Selective k-hop Edge Replication

�  only replicate edges along selective branches
▫  Prefix based pre-partition optimization

�  Prefix-based hashing prior to constructing vertex blocks
�  Example: URI-hierarchy for RDF, pages from the same domain

VB/EVB Grouping and Optimizations

18
[Kisung Lee, Ling Liu, SuperComputingC2013, VLDB2014

•  Given a query Q over the k-hop VB-partitioning (in-
edge, out-edge or bi-direction), three steps for query
processing:
▫  Determine whether Q can be processed at each worker

node using intra-partition processing directly
Ø compute the (in-edge, out-edge or bi-direction) radius of

the query
Ø if radius(Q)<=K, then Q can be processed using

intra-partition processing directly.
▫  If not, decompose Q into subqueries such that all

subqueries can be processed using intra-partition
processing.
▫  Merging the intra-partition processing results using

Hadoop MapReduce.

Partition-aware Query Processing

[Kisung Lee, Ling Liu, SuperComputingC2013, VLDB2014

•  Settings
▫  21 machines (one is the master) on Emulab

�  Each has 12GB RAM, one Xeon E5530, two 250GB disks
▫  Hadoop version 1.0.4
▫  RDF-3X version 0.3.5 as a local graph processing engine
▫  METIS version 5.0.2 for minimum cut-based VB grouping

•  Datasets

Experiments

20

Dataset #vertices #edges avg. #out avg. #in

Freebase 51,295,293 100,692,511 4.41 2.11

DBLP 25,901,515 56,704,672 16.66 2.39

DBpedia 104,351,705 287,957,640 11.62 2.82

LUBM-267M 65,724,613 266,947,598 6.15 8.27

LUBM-534M 131,484,665 534,043,573 6.15 8.27

LUBM-1068M 262,973,129 1,068,074,675 6.15 8.27

SP2B-100M 55,182,878 100,000,380 5.61 2.11

SP2B-200M 111,027,855 200,000,007 5.49 2.08

SP2B-500M 280,908,393 500,000,912 5.31 2.04

•  EVB construction and grouping are implemented using Hadoop cluster
▫  Loading time indicates partition loading time of the local graph engine

(RDF-3X)
▫  Minimum cut-based grouping includes input conversion to METIS input

format and METIS running step. The input conversion is implemented also
using Hadoop cluster

Partitioning and Loading Time

0

2000

4000

6000

8000

10000

12000

si
ng

le

ra
nd

om

ha
sh

m

in
cu

t
hi

gh

ha
sh

m

in
cu

t
hi

gh

ha
sh

m

in
cu

t
hi

gh

ha
sh

m

in
cu

t
hi

gh

ha
sh

m

in
cu

t
hi

gh

1-out 1-in 1-bi 2-out 2-in

Ti
m

e
(s

ec
on

ds
)

Loading Grouping EVB construction

LUBM-267M

ü  Significantly
reduce the graph
loading time
compared to
single server-
based approach

ü  Out-edge VBs are
faster than in-
edge VBs because
they are well-
balanced

•  Show the huge benefit of intra-partition processing
▫  For star-like queries, it is usually fast in our partitions
▫  For complex queries, 2-out has the best performance

�  Except in Q7 which requires inter-partition processing
�  Intermediate result size: 1.2GB >> final result size: 907B
�  But still much faster than random partitioning

Effect of different types of EVBs on Performance

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Q
ue

ry
 P

ro
ce

es
in

g
tim

e
in

 se
c single random 1-out-hash 1-bi-hash 2-out-hash

LUBM-267M (65,724,613, 266,947,598)

Ongoing / Future Work

•  How to handle updates efficiently

•  How to support iterative graph algorithms efficiently
▫  Shared Memory

�  Reducing parallel overhead of barriers
▫  Distributed Memory

�  Optimizing message buffer sizes, #messages
�  overlapping communication w/ computation

24

Questions

