
Carlos Guestrin

Yucheng
Low

Aapo
Kyrola

Danny
Bickson

Large-Scale Machine Learning and Graphs

Haijie
Gu

Joseph
Gonzalez

Joseph
Bradley

PHASE 1

POSSIBILITY

PHASE 2

SCALABILITY

PHASE 3

USABILITY

Three Phases in Technological Development

3.
Usability

2.
Scalability

1.
Possibility

Wide
Adoption
Beyond

Experts &
Enthusiast

Machine Learning
PHASE 1

POSSIBILITY

Rosenblatt 1957

Machine Learning
PHASE 2

SCALABILITY

Needless to Say, We Need
Machine Learning for Big Data

72 Hours a Minute
YouTube 28 Million

Wikipedia Pages

1 Billion
Facebook Users

6 Billion
Flickr Photos

“… data a new class of economic asset,
like currency or gold.”

The Power of
Dependencies

where the value is!

Flashback to 1998

Why?

First Google advantage:
a Graph Algorithm & a System to Support it!

It’s all about the
graphs…

Social Media

Graphs encode the relationships between:

Big: 100 billions of vertices and edges and rich metadata
Facebook (10/2012): 1B users, 144B friendships
Twitter (2011): 15B follower edges

Advertising Science Web

People
Facts

Products
Interests

Ideas

*** Confidential -- ©GraphLab, Inc. ***

Examples of
Graphs in

Machine Learning

Label a Face and Propagate

*** Confidential -- ©GraphLab, Inc. ***

Pairwise similarity not enough…

Not similar enough
to be sure

*** Confidential -- ©GraphLab, Inc. ***

Propagate Similarities & Co-occurrences
for Accurate Predictions

similarity
edges

co-occurring
faces

further evidence

Probabilistic Graphical Models

*** Confidential -- ©GraphLab, Inc. ***

Collaborative Filtering: Exploiting Dependencies

City of God

Wild Strawberries

The Celebration

La Dolce Vita

Women on the Verge of a
Nervous Breakdown

What do I
recommend???

Latent Factor Models
Non-negative Matrix Factorization

*** Confidential -- ©GraphLab, Inc. ***

Liberal Conservative

Post

Post

Post

Post

Post

Post

Post

Post

Estimate Political Bias

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

?
?

?

?

?
?

?

? ?
?

?

?

?
?

?
?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

Semi-Supervised &
Transductive Learning

*** Confidential -- ©GraphLab, Inc. ***

Topic Modeling

Cat

Apple

Growth

Hat

Plant

LDA and co.

*** Confidential -- ©GraphLab, Inc. ***

Data

Machine Learning Pipeline

images

docs

movie
ratings

Extract
Features

faces

important
words

side
info

Graph
Formation

similar
faces

shared
words

rated
movies

Structured
Machine
Learning
Algorithm

belief
propagation

LDA

collaborative
filtering

Value
from
Data

face
labels

doc
topics

movie
recommend.

Data

Parallelizing Machine Learning

Extract
Features

Graph
Formation Structured

Machine
Learning
Algorithm

Value
from
Data

Graph Ingress
mostly data-parallel

Graph-Structured
Computation

graph-parallel

POSSIBILITY

Data Graph
Data associated with vertices and edges

Vertex Data:
• User profile text
• Current interests estimates

Edge Data:
• Similarity weights

Graph:
• Social Network

How do we program
graph computation?

“Think like a Vertex.”
-Malewicz et al. [SIGMOD’10]

pagerank(i, scope){
 // Get Neighborhood data
 (R[i], wij, R[j]) scope;

 // Update the vertex data

 // Reschedule Neighbors if needed
 if R[i] changes then
 reschedule_neighbors_of(i);
}

Update Functions
User-defined program: applied to
vertex transforms data in scope of vertex

Dynamic
computation

Update function applied (asynchronously)
in parallel until convergence

Many schedulers available to prioritize computation

The GraphLab Framework

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

Bayesian Tensor
Factorization

Gibbs Sampling
Dynamic Block Gibbs Sampling

Matrix
Factorization

Lasso

SVM

Belief Propagation PageRank

CoEM

K-Means

SVD

LDA

…Many others…
Linear Solvers

Splash Sampler
Alternating Least

Squares

ML algorithms as vertex programs
Asynchronous execution and consistency
models

GraphLab 1 provided exciting
scaling performance

But…

Thus far…

We couldn’t scale up to
Altavista Webgraph 2002

1.4B vertices, 6.7B edges

Natural Graphs

[Image from WikiCommons]

Problem:

Existing distributed graph
computation systems perform

poorly on Natural Graphs

Achilles Heel: Idealized Graph Assumption

Assumed… But, Natural Graphs…

Small degree 
Easy to partition Many high degree vertices

(power-law degree distribution)


Very hard to partition

Power-Law Degree Distribution
“Star Like” Motif

President
Obama Followers

Problem:
High Degree Vertices  High
Communication for Distributed Updates

Y

Machine 1 Machine 2

Natural graphs do not have low-cost balanced cuts
 [Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,…) perform poorly
 [Abou-Rjeili et al. 06]

Extremely slow and require substantial memory

Data transmitted
across network

O(# cut edges)

Random Partitioning
Both GraphLab 1, Pregel, Twitter, Facebook,… rely on
Random (hashed) partitioning for Natural Graphs

Machine 1 Machine 2

For p Machines:

10 Machines  90% of edges cut
100 Machines  99% of edges cut!

All data is communicated… Little advantage over MapReduce

In Summary

GraphLab 1 and Pregel are not well
suited for natural graphs

Poor performance on high-degree vertices
Low Quality Partitioning

SCALABILITY

Gather Information
About Neighborhood

Apply Update to Vertex

Scatter Signal to Neighbors
& Modify Edge Data

Common Pattern for Update Fncs.

GraphLab_PageRank(i)
 // Compute sum over neighbors
 total = 0
 foreach(j in in_neighbors(i)):
 total = total + R[j] * wji

 // Update the PageRank
 R[i] = 0.1 + total

 // Trigger neighbors to run again
 if R[i] not converged then
 foreach(j in out_neighbors(i))
 signal vertex-program on j

R[i]

R[j]
wji

GAS Decomposition
Y

+ … + 

Y

Parallel
“Sum”

Y

Gather (Reduce)
Apply the accumulated
value to center vertex

Apply
Update adjacent edges

and vertices.

Scatter
Accumulate information

about neighborhood

Y

+

Y Σ Y
’ Y’

Many ML Algorithms fit
into GAS Model

graph analytics, inference in graphical

models, matrix factorization,
collaborative filtering, clustering, LDA, …

Minimizing Communication in GL2 PowerGraph:
Vertex Cuts

Y Communication linear
in # spanned machines

Y Y

A vertex-cut minimizes
machines per vertex

Percolation theory suggests Power Law graphs can be split
by removing only a small set of vertices [Albert et al. 2000]


Small vertex cuts possible!

GL2 PowerGraph includes novel vertex cut algorithms


Provides order of magnitude gains in performance

34.8 Billion Triangles
Triangle Counting on Twitter Graph

64 Machines
15 Seconds

1636 Machines
423 Minutes

Hadoop
[WWW’11]

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

Why? Hadoop Wrong Abstraction for Graphs 
 Broadcast O(degree2) messages per Vertex

*** Confidential -- ©GraphLab, Inc. ***

Topic Modeling (LDA)
English language Wikipedia

2.6M Documents, 8.3M Words, 500M Tokens

Computationally intensive algorithm

0 20 40 60 80 100 120 140 160

Smola et al.

GL2 PowerGraph

Million Tokens Per Second

100 Yahoo! Machines

64 cc2.8xlarge EC2 Nodes

Specifically engineered for this task

200 lines of code & 4 human hours

*** Confidential -- ©GraphLab, Inc. ***

How well does GraphLab scale?

Yahoo Altavista Web Graph (2002):
 One of the largest publicly available webgraphs

1.4B Webpages, 6.7 Billion Links

1024 Cores (2048 HT) 4.4 TB RAM

64 HPC Nodes

7 seconds per iter.
1B links processed per second

30 lines of user code

*** Confidential -- ©GraphLab, Inc. ***

GraphChi: Going small with GraphLab

Solve huge problems on
small or embedded

devices?

Key: Exploit non-volatile memory
(starting with SSDs and HDs)

GraphChi – disk-based GraphLab

Challenge:
 Random Accesses

Novel GraphChi solution:
 Parallel sliding windows method 
 minimizes number of random accesses

Performance Comparison

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to
load the graph from disk.

PageRank

See the paper for more comparisons.

WebGraph Belief Propagation (U Kang et al.)

Matrix Factorization (Alt. Least Sqr.) Triangle Counting

GraphLab
v1 (8 cores)

GraphChi
(Mac Mini)

0 2 4 6 8 10 12
Minutes

Netflix (99B edges)

Spark (50
machines)

GraphChi
(Mac Mini)

0 2 4 6 8 10 12 14
Minutes

Twitter-2010 (1.5B edges)

Pegasus /
Hadoop

(100
machines)

GraphChi
(Mac Mini)

0 5 10 15 20 25 30
Minutes

Yahoo-web (6.7B edges)

Hadoop
(1636

machines)

GraphChi
(Mac Mini)

0 100 200 300 400 500
Minutes

twitter-2010 (1.5B edges)

On a Mac Mini:
GraphChi can solve problems as big as

existing large-scale systems
Comparable performance

GRAPHCHI-DB:
LARGE-SCALE GRAPH COMPUTATION +
GRAPH DATABASE ON JUST A PC

WHERE NEXT?

Graph Databases vs.
Graph Computation Systems

• Current graph databases do not provide large-
scale graph computation capabilities
– E.g., Titan: graph computation executed outside

database, using Hadoop

• Can we have a graph database on a single
machine that can store billions of edges and
vertices, and do efficient graph computation?
– Challenge is to handle graph queries and updates

while executing computation

Existing Pieces

“Proof of
Concept” –
but need

new design

GraphChi / PSW
for computation

Shard indexing
for queries

“Evolving graph”
functionality of

GraphChi

ML algorithms as vertex programs
Asynchronous execution and consistency
models

Natural graphs change the nature of
computation
Vertex cuts and gather/apply/scatter model

GraphLab: Highly Visible Open-Source Project

Scalability

GL2 PowerGraph
focused on

at the loss of
Usability

GraphLab 1

Explicitly described operations

PageRank(i, scope){
 acc = 0
 for (j in InNeighbors) {
 acc += pr[j] * edge[j].weight
 }
 pr[i] = 0.15 + 0.85 * acc
}

Code is intuitive

GL2 PowerGraph GraphLab 1

Explicitly described operations

PageRank(i, scope){
 acc = 0
 for (j in InNeighbors) {
 acc += pr[j] * edge[j].weight
 }
 pr[i] = 0.15 + 0.85 * acc
}

Implicit operation

Implicit aggregation

gather(edge) {
 return edge.source.value *
 edge.weight
}

merge(acc1, acc2) {
 return accum1 + accum2
}

apply(v, accum) {
 v.pr = 0.15 + 0.85 * acc
}

Need to understand engine
to understand code Code is intuitive

What now?

Great flexibility,
but hit scalability wall

Scalability,
but very rigid abstraction

(many contortions needed to implement
SVD++, Restricted Boltzmann Machines)

USABILITY

Machine 1 Machine 2

GL3 WarpGraph Goals

Program
Like GraphLab 1

Run Like
GraphLab 2

Fine-Grained Primitives

Y

PageRankUpdateFunction(Y) {
 Y.pagerank = 0.15 + 0.85 *
 MapReduceNeighbors(
 lambda nbr: nbr.pagerank*nbr.weight,
 lambda (a,b): a + b
)
}

Expose Neighborhood Operations through Parallelizable Iterators

(aggregate sum over neighbors)

Expressive, Extensible Neighborhood API

+ + … +

Y Y Y

Parallel
Sum

Y

MapReduce over
Neighbors

Y

Modify adjacent edges

Parallel Transform
Adjacent Edges

Y

Schedule a selected subset
of adjacent vertices

Broadcast

DHT Get Keys

DHT Update
Keys

Can express every GL2 PowerGraph program
(more easily) in GL3 WarpGraph

Multiple
gathers

Scatter before
gather

Conditional
execution

But GL3 is more
expressive

UpdateFunction(v) {
 if (v.data == 1)
 accum = MapReduceNeighs(g,m)
 else ...
}

GL2 PowerGraph:
 Fast because communication phases are very predictable

Y

Gather Apply Scatter

Y Σ Y’ Y’

Y

Gather Transform

Y’

Scatter

Y’ Y

Gather

…

… repeat

GL3 WarpGraph:
 Communication highly unpredictable

Risk: High Latency
(spend all our time waiting for a reply…)

Hide Latency
Do Something Else while Waiting

Create 1000s of threads, each running an update function on a different vertex

Performance Bottleneck: Context Switching

Every cycle used in
context switching is wasted
(OS context switch is slow requiring 10K-100k cycles)

GL3 WarpGraph: Novel user-mode threading

8M context switches per second
100x faster than OS

Graph Coloring Twitter Graph: 41M Vertices 1.4B Edges

WarpGraph outperforms PowerGraph with simpler code

32 Nodes x 16 Cores (EC2 HPC cc2.8x)

2.5x Faster GL3 WarpGraph 89 seconds

227 seconds GL2 PowerGraph

Usability

Consensus that WarpGraph is much
easier to use than PowerGraph

“User study” group biased… :-)

RECENT RELEASE: GRAPHLAB 2.2,
INCLUDING WARPGRAPH ENGINE

And support for
streaming/dynamic graphs!

Usability for Whom???

… GL3
WarpGraph

GL2
PowerGraph

Machine Learning
PHASE 3

USABILITY

Exciting Time to Work in ML
With Big Data,
I’ll take over
the world!!!

We met
because of

Big Data

Why won’t
Big Data read
my mind???

Unique opportunities to change the world!! 
But, every deployed system is an one-off solution,

and requires PhDs to make work… 

ML key to any
new service we
want to build

But…

Even basics of scalable ML
can be challenging

6 months from R/Matlab
to production, at best

State-of-art ML algorithms
trapped in research papers

Goal of GraphLab 3:
Make huge-scale machine learning accessible to all! 

Step 1
Learning ML in Practice

with GraphLab Notebook

Step 2
GraphLab+Python:

ML Prototype to Production

Learn:
GraphLab
Notebook

Prototype:
pip install graphlab


local prototyping

Production:
Same code scales -

execute on EC2
cluster

Step 3
GraphLab Toolkits:

Integrated State-of-the-Art
ML in Production

GraphLab Toolkits
Highly scalable, state-of-the-art

machine learning straight from python

Graph
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering

Now with GraphLab: Learn/Prototype/Deploy

Even basics of scalable ML
can be challenging

6 months from R/Matlab
to production, at best

State-of-art ML algorithms
trapped in research papers

Learn ML with
GraphLab Notebook

pip install graphlab
then deploy on EC2

Fully integrated
via GraphLab Toolkits

 Possibility

 Scalability

 Usability

GraphLab 2.2 available now: graphlab.org

	Slide Number 1
	PHASE 1
	Slide Number 3
	PHASE 2
	Slide Number 5
	PHASE 3
	Slide Number 7
	Three Phases in Technological Development
	Machine Learning PHASE 1
	Slide Number 10
	Machine Learning PHASE 2
	Needless to Say, We Need Machine Learning for Big Data
	The Power of Dependencies��where the value is!
	Flashback to 1998
	It’s all about the graphs…
	Slide Number 16
	Examples of�Graphs in �Machine Learning
	Label a Face and Propagate
	Pairwise similarity not enough…
	Propagate Similarities & Co-occurrences for Accurate Predictions
	Collaborative Filtering: Exploiting Dependencies
	Estimate Political Bias
	Topic Modeling
	Machine Learning Pipeline
	Parallelizing Machine Learning
	Slide Number 26
	Data Graph
	How do we program �graph computation?
	Update Functions
	The GraphLab Framework
	Slide Number 31
	Slide Number 32
	GraphLab 1 provided exciting�scaling performance
	Natural Graphs
	Existing distributed graph computation systems perform poorly on Natural Graphs
	Achilles Heel: Idealized Graph Assumption
	Power-Law Degree Distribution
	Problem: �High Degree Vertices  High Communication for Distributed Updates
	Random Partitioning
	In Summary
	Slide Number 41
	Common Pattern for Update Fncs.
	GAS Decomposition
	Many ML Algorithms fit into GAS Model��graph analytics, inference in graphical models, matrix factorization, collaborative filtering, clustering, LDA, …
	Minimizing Communication in GL2 PowerGraph: Vertex Cuts
	Triangle Counting on Twitter Graph
	Topic Modeling (LDA)
	How well does GraphLab scale?
	GraphChi: Going small with GraphLab
	GraphChi – disk-based GraphLab
	Performance Comparison
	Graphchi-db: �large-scale graph computation + graph database on just a pc
	Graph Databases vs. �Graph Computation Systems
	Existing Pieces
	Slide Number 55
	Slide Number 56
	Scalability
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	GL3 WarpGraph Goals
	Fine-Grained Primitives
	Expressive, Extensible Neighborhood API
	Slide Number 65
	Slide Number 66
	Hide Latency
	Graph Coloring
	Usability
	Usability for Whom???
	Machine Learning PHASE 3
	Exciting Time to Work in ML
	ML key to any new service we want to build
	Step 1 �Learning ML in Practice with GraphLab Notebook
	Step 2�GraphLab+Python: �ML Prototype to Production
	Slide Number 76
	Step 3 �GraphLab Toolkits: �Integrated State-of-the-Art ML in Production
	GraphLab Toolkits
	Slide Number 80
	Slide Number 81

