

### Large-Scale Machine Learning and Graphs

#### **Carlos Guestrin**



Joseph Gonzalez



Yucheng Low



Aapo Kyrola



Haijie Gu



Joseph Bradley



Danny Bickson

### PHASE 1

### POSSIBILITY



### PHASE 2

### SCALABILITY



### PHASE 3

### USABILITY



#### Three Phases in Technological Development



# Machine Learning PHASE 1

### POSSIBILITY







Rosenblatt 1957

# Machine Learning PHASE 2

### SCALABILITY



### Needless to Say, We Need Machine Learning for Big Data





6 Billion Flickr Photos

28 Million Wikipedia Pages



1 Billion Facebook Users **You Tube** 72 Hours a Minute YouTube

### The New Hork Times

WORLD U.S. N.Y. / REGION BUSINESS TEC

NEWS ANALYSIS
The Age of Big Data

By STEVE LOHR Published: February 11, 2012 "... data a new class of economic asset, like currency or gold." The Power of Dependencies

### where the value is!

## Flashback to 1998



### First Google advantage: a **Graph Algorithm** & a **System to Support** it!

# It's all about the graphs...



• Graphs encode the relationships between:

### People Products Ideas Facts Interests

Big: 100 billions of vertices and edges and rich metadata

- Facebook (10/2012): 1B users, 144B friendships
- Twitter (2011): 15B follower edges

Examples of Graphs in Machine Learning

### Label a Face and Propagate



### Pairwise similarity not enough...



Propagate Similarities & Co-occurrences for Accurate Predictions

### Probabilistic Graphical Models

grandmall

similarity edges

grandma



co-occurring faces further evidence

#### **Collaborative Filtering: Exploiting Dependencies**



Women on the Verge of a Nervous Breakdown

The Celebration

### Latent Factor Models Non-negative Matrix Factorization



Wild Strawberries

La Dolce Vita

### **Estimate Political Bias**



### **Topic Modeling**



### **Machine Learning Pipeline**



### Parallelizing Machine Learning





### POSSIBILITY



### Data Graph

Data associated with vertices and edges





Vertex Data:



- User profile text
- Current interests estimates

Edge Data:

- Similarity weights

How do we *program* graph computation?

# "Think like a Vertex." -Malewicz et al. [SIGMOD'10]

### **Update Functions**

User-defined program: applied to vertex transforms data in scope of vertex



Update function applied (asynchronously) in parallel until convergence

Many schedulers available to prioritize computation

Dynamic computation

### The GraphLab Framework

Graph Based Data Representation



Update Functions User Computation



Scheduler



**Consistency Model** 







- ML algorithms as vertex programs
- Asynchronous execution and consistency models

Thus far...

# GraphLab 1 provided exciting scaling performance

But...

### We couldn't scale up to Altavista Webgraph 2002 1.4B vertices, 6.7B edges

# Natural Graphs



# Problem:

Existing *distributed* graph computation systems perform poorly on **Natural Graphs** 

#### Achilles Heel: Idealized Graph Assumption

#### Assumed...



### Small degree -> Easy to partition

#### But, Natural Graphs...



Many high degree vertices (power-law degree distribution) > Very hard to partition
## Power-Law Degree Distribution "Star Like" Motif

President Obama



### Problem: **High Degree Vertices → High Communication for Distributed Updates**



Extremely slow and require substantial memory

## **Random Partitioning**

 Both GraphLab 1, Pregel, Twitter, Facebook,... rely on Random (hashed) partitioning for Natural Graphs



All data is communicated... Little advantage over MapReduce

In Summary

## GraphLab 1 and Pregel are not well suited for natural graphs

Poor performance on high-degree vertices

Low Quality Partitioning



### SCALABILITY



## **Common Pattern** for Update Fncs.



#### GraphLab\_PageRank(i)

// Compute sum over neighbors
total = 0
foreach( j in in\_neighbors(i)):
total = total + R[j] \* W<sub>ji</sub>

#### **Gather** Information About Neighborhood

## // Update the PageRank R[i] = 0.1 + total Apply Update to Vertex

// Trigger neighbors to run again
if R[i] not converged then Scatter Signal to Neighbors
foreach( j in out\_neighbors(i)) & Modify Edge Data
 signal vertex-program on j

## **GAS** Decomposition



Many ML Algorithms fit into GAS Model

graph analytics, inference in graphical models, matrix factorization, collaborative filtering, clustering, LDA, ...

## Minimizing Communication in GL2 PowerGraph: Vertex Cuts



Percolation theory suggests Power Law graphs can be split by removing only a small set of vertices [Albert et al. 2000]

Small vertex cuts possible!

#### **Triangle Counting** on Twitter Graph 34.8 Billion Triangles



Why? Hadoop Wrong Abstraction for Graphs → Broadcast O(degree<sup>2</sup>) messages per Vertex

S. Suri and S. Vassilvitskii, "Counting triangles and the curse of the last reducer," WWW'11

\*\*\* Confidential -- ©GraphLab, Inc. \*\*\*

## Topic Modeling (LDA)



#### English language Wikipedia

- 2.6M Documents, 8.3M Words, 500M Tokens
- Computationally intensive algorithm



## How well does GraphLab scale?

Yahoo Altavista Web Graph (2002):

One of the largest publicly available webgraphs

1.4B Webpages, 6.7 Billion Links

## 7 seconds per iter.

## 1B links processed per second 30 lines of user code



1024 Cores (2048 HT)



**4.4 TB RAM** 

## **GraphChi:** Going small with GraphLab





Solve huge problems on small or embedded devices?



Key: Exploit non-volatile memory (starting with SSDs and HDs)

### GraphChi – disk-based GraphLab



#### **Novel GraphChi solution**:

Parallel sliding windows method minimizes number of random accesses

See the paper for more comparisons.

## **Performance** Comparison



WebGraph Belief Propagation (U Kang et al.)



Yahoo-web (6.7B edges)





Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the graph from disk.

## GRAPHCHI-DB: LARGE-SCALE GRAPH COMPUTATION + GRAPH DATABASE ON JUST A PC

WHERE NEXT?

## Graph Databases vs. Graph Computation Systems

- Current graph databases do not provide largescale graph computation capabilities
  - E.g., Titan: graph computation executed outside database, using Hadoop
- Can we have a graph database on a single machine that can store billions of edges and vertices, and do efficient graph computation?
  - Challenge is to handle graph queries and updates while executing computation

## **Existing Pieces**





- ML algorithms as vertex programs
- Asynchronous execution and consistency models



- Natural graphs change the nature of computation
- Vertex cuts and gather/apply/scatter model

# GraphLab: Highly Visible Open-Source Project





**100+** NSF PROPOSALS MENTIONING GRAPHLAB

## \$6.75M vc funding for spinoff effort

GL2 PowerGraph focused on Scalability

> at the loss of Usability

## **GraphLab 1**

**Explicitly described operations** 

#### Code is intuitive





#### Great flexibility, but hit scalability wall



#### Scalability,

#### but very rigid abstraction

(many contortions needed to implement SVD++, Restricted Boltzmann Machines)





### USABILITY



## GL3 WarpGraph Goals



## **Fine-Grained Primitives**

#### **Expose Neighborhood Operations through Parallelizable Iterators**

$$R[i] = 0.15 + 0.85 \sum_{(j,i)\in E} \mathbf{w}[j,i] * R[j]$$



PageRankUpdateFunction(Y) {
 Y.pagerank = 0.15 + 0.85 \*

### Expressive, Extensible Neighborhood API



#### Can express every GL2 PowerGraph program (more easily) in GL3 WarpGraph



#### GL2 PowerGraph:

Fast because communication phases are very predictable



... repeat

GL3 WarpGraph:

#### **Communication** highly **unpredictable**



. . .

#### Risk: High Latency (spend all our time waiting for a reply...)

## Hide Latency

## Do Something Else while Waiting

Create 1000s of threads, each running an update function on a different vertex

Performance Bottleneck: Context Switching



Every cycle used in context switching is wasted (OS context switch is slow requiring 10K-100k cycles)

GL3 WarpGraph: Novel user-mode threading 8M context switches per second 100x faster than OS

## Graph Coloring Twitter Graph: 41M Vertices 1.4B Edges



#### WarpGraph outperforms PowerGraph with simpler code

32 Nodes x 16 Cores (EC2 HPC cc2.8x)

## Usability

#### RECENT RELEASE: GRAPHLAB 2.2, INCLUDING WARPGRAPH ENGINE

And support for streaming/dynamic graphs!

## Consensus that WarpGraph is much easier to use than PowerGraph

"User study" group biased... :-)

## Usability for Whom???



## Machine Learning PHASE 3

### USABILITY



## Exciting Time to Work in ML



Unique opportunities to change the world!! But, every deployed system is an one-off solution, and requires PhDs to make work...
### But...

Even basics of scalable ML can be challenging

### ML key to any new service we want to build

6 months from R/Matlab to production, at best

State-of-art ML algorithms trapped in research papers

**Goal of GraphLab 3**: Make huge-scale *machine learning* accessible to all! ③ Step 1 Learning ML in Practice with **GraphLab Notebook**  Step 2 GraphLab+Python: ML Prototype to Production *Learn:* GraphLab Notebook



Prototype: pip install graphlab local prototyping

Production: Same code scales execute on EC2 cluster Step 3 GraphLab Toolkits: Integrated State-of-the-Art ML in Production

# GraphLab Toolkits

# Highly scalable, state-of-the-art machine learning straight from python



### Now with GraphLab: Learn/Prototype/Deploy

Even basics of scalable ML can be challenging

Learn ML with GraphLab Notebook

6 months from R/Matlab to production, at best *pip install graphlab* then deploy on EC2

State-of-art ML algorithms trapped in research papers

Fully integrated via GraphLab Toolkits



## **₩**<sup>3</sup> Usability

#### GraphLab 2.2 available now: graphlab.org