PHASE 1

POSSIBILITY
PHASE 2

SCALABILITY
PHASE 3

USABILITY
Three Phases in Technological Development

1. Possibility
2. Scalability
3. Usability

Wide Adoption Beyond Experts & Enthusiast
Machine Learning
PHASE 1
POSSIBILITY
Machine Learning
PHASE 2
SCALABILITY
Needless to Say, We Need Machine Learning for Big Data

6 Billion Flickr Photos
28 Million Wikipedia Pages
1 Billion Facebook Users
72 Hours a Minute YouTube

“... data a new class of economic asset, like currency or gold.”

The Power of Dependencies

where the value is!
Flashback to 1998

First Google advantage: a Graph Algorithm & a System to Support it!
It’s all about the graphs...
Graphs encode the relationships between:

- People
- Products
- Ideas
- Facts
- Interests

Big: 100 billions of vertices and edges and rich metadata

- Facebook (10/2012): 1B users, 144B friendships
- Twitter (2011): 15B follower edges
Examples of Graphs in Machine Learning
Label a Face and Propagate

grandma
Pairwise similarity not enough...

Not similar enough to be sure

Who????
Propagate Similarities & Co-occurrences for Accurate Predictions

Probabilistic Graphical Models

similarity edges

co-occurring faces further evidence
Collaborative Filtering: Exploiting Dependencies

Latent Factor Models
Non-negative Matrix Factorization

Women on the Verge of a Nervous Breakdown
The Celebration
Wild Strawberries
La Dolce Vita

What do I recommend???

*** Confidential -- ©GraphLab, Inc. ***
Estimate Political Bias

Semi-Supervised & Transductive Learning

Liberal

Conservative
Topic Modeling

LDA and co.
Machine Learning Pipeline

Data
- images
- docs
- movie ratings

Extract Features
- faces
- important words
- side info

Graph Formation
- similar faces
- shared words
- rated movies

Structured Machine Learning Algorithm
- belief propagation
- LDA
- collaborative filtering

Value from Data
- face labels
- doc topics
- movie recommend.
Parallelizing Machine Learning

Data

Graph Ingress
mostly data-parallel

Extract Features

Graph Formation

Structured Machine Learning Algorithm

Graph-Structured Computation
graph-parallel

Value from Data

GraphLab
Data Graph

Data associated with vertices and edges

Graph:
- Social Network

Vertex Data:
- User profile text
- Current interests estimates

Edge Data:
- Similarity weights
How do we program graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]
Update Functions

User-defined program: applied to vertex transforms data in scope of vertex

Update function applied (asynchronously) in parallel until convergence

Many schedulers available to prioritize computation
The GraphLab Framework

Graph Based

Data Representation

Scheduler

Update Functions

User Computation

Consistency Model
Bayesian Tensor Factorization
Gibbs Sampling
Dynamic Block Gibbs Sampling
CoEM
SVD
Belief Propagation
PageRank
Splash Sampler
Bayesian Tensor Factorization
SVM
GraphLab
Linear Solvers
Alternating Least Squares
Lasso
LDA
Gibbs Sampling
K-Means
...Many others...
Matrix Factorization
- ML algorithms as vertex programs
- Asynchronous execution and consistency models
Thus far...

GraphLab 1 provided exciting scaling performance

But...

We couldn’t scale up to Altavista Webgraph 2002
1.4B vertices, 6.7B edges
Problem:

Existing *distributed* graph computation systems perform poorly on *Natural Graphs*
Achilles Heel: Idealized Graph Assumption

Assumed...

Small degree \rightarrow Easy to partition

But, Natural Graphs...

Many high degree vertices (power-law degree distribution) \rightarrow Very hard to partition
Power-Law Degree Distribution

“Star Like” Motif

President
Obama

Followers
Problem:
High Degree Vertices \Rightarrow High Communication for Distributed Updates

Natural graphs do not have low-cost balanced cuts
[Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,...) perform poorly
[Abou-Rjeili et al. 06]

Extremely slow and require substantial memory

Data transmitted across network $O(\# \text{ cut edges})$
Random Partitioning

Both GraphLab 1, Pregel, Twitter, Facebook, ... rely on Random (hashed) partitioning for Natural Graphs

For p Machines:

- 10 Machines \rightarrow 90% of edges cut
- 100 Machines \rightarrow 99% of edges cut!

All data is communicated... Little advantage over MapReduce
In Summary

GraphLab 1 and Pregel are not well suited for natural graphs

- Poor performance on high-degree vertices
- Low Quality Partitioning
SCALABILITY
Common Pattern for Update Fncs.

GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach (j in in_neighbors(i)):
 total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.1 + total

// Trigger neighbors to run again
if R[i] not converged then
 foreach (j in out_neighbors(i))
 signal vertex-program on j

Gather Information About Neighborhood

Apply Update to Vertex

Scatter Signal to Neighbors & Modify Edge Data
GAS Decomposition

Gather (Reduce)
Accumulate information about neighborhood

Parallel “Sum”
\[\sum \]

Apply
Apply the accumulated value to center vertex

Scatter
Update adjacent edges and vertices.
Many ML Algorithms fit into GAS Model

graph analytics, inference in graphical models, matrix factorization, collaborative filtering, clustering, LDA, ...
Minimizing Communication in GL2 PowerGraph: Vertex Cuts

GL2 PowerGraph includes novel vertex cut algorithms

Provides order of magnitude gains in performance

machines per vertex

Percolation theory suggests Power Law graphs can be split by removing only a small set of vertices [Albert et al. 2000]

Small vertex cuts possible!
Triangle Counting on Twitter Graph
34.8 Billion Triangles

Hadoop
[WWW’11]

1636 Machines
423 Minutes

GL2
PowerGraph

64 Machines
15 Seconds

Why? Hadoop Wrong Abstraction for Graphs → Broadcast $O(\text{degree}^2)$ messages per Vertex

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11
Topic Modeling (LDA)

- English language Wikipedia
 - 2.6M Documents, 8.3M Words, 500M Tokens
 - Computationally intensive algorithm

Million Tokens Per Second

- Smola et al.
 - 100 Yahoo! Machines
 - Specifically engineered for this task

- GL2 PowerGraph
 - 64 cc2.8xlarge EC2 Nodes
 - 200 lines of code & 4 human hours

*** Confidential -- ©GraphLab, Inc. ***
How well does GraphLab scale?

Yahoo Altavista Web Graph (2002):
One of the largest publicly available webgraphs

1.4B Webpages, 6.7 Billion Links

7 seconds per iter.

1B links processed per second

30 lines of user code

1024 Cores (2048 HT) 4.4 TB RAM
GraphChi: Going small with GraphLab

Solve huge problems on small or embedded devices?

Key: Exploit non-volatile memory (starting with SSDs and HDs)
GraphChi – disk-based GraphLab

Challenge: Random Accesses

Novel GraphChi solution:
Parallel sliding windows method ➔ minimizes number of random accesses
Performance Comparison

PageRank

WebGraph Belief Propagation (U Kang et al.)

- **Twitter-2010 (1.5B edges)**
- **Yahoo-web (6.7B edges)**

- ✔ GraphChi can solve problems as big as existing large-scale systems
- ✔ Comparable performance

Matrix

- **GraphLab v1 (8 cores)**
- **Hadoop (1636 machines)**

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the graph from disk.
WHERE NEXT?

GRAPHCHI-DB:

LARGE-SCALE GRAPH COMPUTATION +

GRAPH DATABASE ON JUST A PC
Graph Databases vs. Graph Computation Systems

• Current graph databases do not provide large-scale graph computation capabilities
 – E.g., Titan: graph computation executed outside database, using Hadoop

• Can we have a graph database on a single machine that can store billions of edges and vertices, and do efficient graph computation?
 – Challenge is to handle graph queries and updates while executing computation
Existing Pieces

GraphChi / PSW for computation

Shard indexing for queries

“Evolving graph” functionality of GraphChi

“Proof of Concept” – but need new design
- ML algorithms as vertex programs
- Asynchronous execution and consistency models

- Natural graphs change the nature of computation
- Vertex cuts and gather/apply/scatter model
GraphLab: Highly Visible Open-Source Project

320 Attendees in First Workshop

570 Attendees in Second Workshop

100+ Companies

100+ NSF Proposals Mentioning GraphLab

$6.75M VC Funding for Spinoff Effort
GL2 PowerGraph
focused on Scalability
at the loss of Usability
GraphLab 1

Explicitly described operations

PageRank(i, scope) {
 acc = 0
 for (j in InNeighbors) {
 acc += pr[j] * edge[j].weight
 }
 pr[i] = 0.15 + 0.85 * acc
}

Code is intuitive
GL2 PowerGraph

Explicitly described operations

PageRank (i, scope) {
 acc = 0
 for (j in InNeighbors) {
 acc += pr[j] * edge[j].weight
 }
 pr[i] = 0.15 + 0.85 * acc
}

Implicit operation

gather (edge) {
 return edge.source.value * edge.weight
}

merge (acc1, acc2) {
 return accum1 + accum2
}

apply (v, accum) {
 v.pr = 0.15 + 0.85 * acc
}

Implicit aggregation

GraphLab 1

Explicitly described operations

PageRank (i, scope) {
 acc = 0
 for (j in InNeighbors) {
 acc += pr[j] * edge[j].weight
 }
 pr[i] = 0.15 + 0.85 * acc
}

Code is intuitive

Need to understand engine to understand code
Great flexibility, but hit scalability wall

Scalability, but very rigid abstraction
(many contortions needed to implement SVD++, Restricted Boltzmann Machines)
GraphLab3
WarpGraph

USABILITY

In a realm all its own... Cadillac
GL3 WarpGraph Goals

Program Like GraphLab 1

Run Like GraphLab 2

Machine 1

Machine 2
Fine-Grained Primitives

Expose Neighborhood Operations through Parallelizable Iterators

\[
R[i] = 0.15 + 0.85 \sum_{(j, i) \in E} w[j, i] \times R[j]
\]

PageRankUpdateFunction(Y) {
 Y.pagerank = 0.15 + 0.85 \times MapReduceNeighbors(
 lambda nbr: nbr.pagerank * nbr.weight,
 lambda (a, b): a + b)
}
Expressive, Extensible Neighborhood API

MapReduce over Neighbors
- Parallel Sum

Parallel Transform Adjacent Edges
- Modify adjacent edges

Broadcast
- Schedule a selected subset of adjacent vertices

DHT Get Keys

DHT Update Keys
Can express every GL2 PowerGraph program (more easily) in GL3 WarpGraph

But GL3 is more expressive

- Multiple gathers
- Scatter before gather
- Conditional execution

```
UpdateFunction(v) {
    if (v.data == 1)
        accum = MapReduceNeighs(g,m)
    else ...
}
```
GL2 PowerGraph:

Fast because **communication** phases are very **predictable**

\[\text{Gather} \xrightarrow{\Sigma} \text{Apply} \xrightarrow{Y'} \text{Scatter} \]

... repeat

GL3 WarpGraph:

Communication highly **unpredictable**

\[\text{Scatter} \xrightarrow{} \text{Gather} \xrightarrow{} \text{Transform} \xrightarrow{} \text{Gather} \]

\[\ldots \]

Risk: **High Latency**

(spend all our time waiting for a reply...)
Hide Latency

Do Something Else while Waiting
Create 1000s of threads, each running an update function on a different vertex

Performance Bottleneck: Context Switching
Every cycle used in context switching is wasted
(OS context switch is slow requiring 10K-100k cycles)

GL3 WarpGraph: Novel user-mode threading
8M context switches per second
100x faster than OS
Graph Coloring
Twitter Graph: 41M Vertices 1.4B Edges

WarpGraph outperforms PowerGraph with simpler code

GL2 PowerGraph 227 seconds
GL3 WarpGraph 89 seconds 2.5x Faster

32 Nodes x 16 Cores (EC2 HPC cc2.8x)
Usability

RECENT RELEASE: GRAPHLAB 2.2, INCLUDING WARPGRAPH ENGINE

And support for streaming/dynamic graphs!

Consensus that WarpGraph is much easier to use than PowerGraph

“User study” group biased... :-)

Usability for Whom???

GL2
PowerGraph

GL3
WarpGraph

...
Machine Learning
PHASE 3
USABILITY

In a realm all its own... Cadillac
Exciting Time to Work in ML

With Big Data, I’ll take over the world!!!

We met because of Big Data

Why won’t Big Data read my mind???

Unique opportunities to change the world!! 😊
But, every deployed system is an one-off solution, and requires PhDs to make work... 😞
ML key to any new service we want to build

But...

- Even basics of scalable ML can be challenging
- 6 months from R/Matlab to production, at best
- State-of-art ML algorithms trapped in research papers

Goal of GraphLab 3:
Make huge-scale *machine learning* accessible to all! 😊
Step 1
Learning ML in Practice with GraphLab Notebook
Step 2

GraphLab+Python: ML Prototype to Production
Learn:
GraphLab Notebook

Prototype:
pip install graphlab
local prototyping

Production:
Same code scales -
execute on EC2 cluster
Step 3
GraphLab Toolkits: Integrated State-of-the-Art ML in Production
GraphLab Toolkits

Highly scalable, state-of-the-art machine learning straight from python
Now with GraphLab: Learn/Prototype/Deploy

Even basics of scalable ML can be challenging

6 months from R/Matlab to production, at best

State-of-art ML algorithms trapped in research papers

Learn ML with GraphLab Notebook

pip install graphlab then deploy on EC2

Fully integrated via GraphLab Toolkits
GraphLab

v1 Possibility

v2 Scalability

v3 Usability

GraphLab 2.2 available now: graphlab.org