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Background 

• Data centers run a large mix of workloads 
…leading to diverse resource requirements 
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multi-resource scheduling necessary for 
isolation and efficiency 



Background: multi-resource 
fairness 

• Dominant Resource Fairness (DRF)  
– Share guarantee: guaranteed 1/n share 
– Strategy-proof: lying can only hurt you 

 
• Well understood 

– Efficiency, extensions, limitations 
 

• DRF now de-facto scheduler in Hadoop 
– DRF capacity scheduler (HortonWorks) 
– DRF fair scheduler (Cloudera) 
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Slight problem… 

• Hadoop always had hierarchical policies 
– Problem: DRF didn’t mention hierarchies 

 
• Both industry implementations adapted 

DRF to support hierarchies 
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What’s hierarchical scheduling? 



Hierarchical Scheduling 
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Hierarchical Scheduling 
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Hierarchical Scheduling 
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Challenging 

• Hadoop DRF schedulers can break down 
– Leave resources unallocated, or 
– Starve some users 
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Multi-Resource Scheduling Hierarchical Policies 
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Problem Statement 
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How to generalize DRF to support 
hierarchical policies? 

Dominant Resource Fairness Hierarchical Scheduling 

+ 



Problem Statement 
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How to generalize DRF to support 
hierarchical policies? 

Dominant Resource Fairness Hierarchical Scheduling 

+ • Share guarantee 
1/n share to leafs 
 

• Pareto efficiency 
Work-conservation 
 

• Hierarchical  share  
guarantee 
1/n to every node  
 

• Pareto efficiency 
Work-conservation 

 



Outline 

• How to schedule multi-resources? (DRF) 
• Why is it challenging? 
• What’s our solution? (H-DRF) 
• How well does it work? 
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Dominant Resource Fairness 
(DRF) 

• Dominant resource of a user is the resource she has biggest share of 
– Dominant share of a user is her share of her dominant resource 

 
 

 Total resources:   <100 Cpus, 100 Gpus>   (2 types of resources) 
 User 1 demand: <3 Cpus, 2 Gpus>              dom res: Cpu 
 User 2 demand: <2 Cpus, 3 Gpus>              dom res: Gpu 
 

• DRF Scheduler 
– Max-min fair allocation on dominant shares 
– ”Equalize” the dominant share of all users 
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Outline 

• How to schedule multi-resources? (DRF) 
• Why is it challenging? 
• What’s our solution? (H-DRF) 
• How well does it work? 

15 



Hierarchy Flattening 

• General technique 
– Compute fair share of every leaf node 
– Use weighted scheduler (weighted DRF) 

 

 
 
 
 

• Works for any single-resource scheduler  
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Outline 

• How to schedule multi-resources? (DRF) 
• Why is it challenging? 
• What’s our solution? (H-DRF) 
• How well does it work? 
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Static H-DRF 

• Traverse tree top to bottom  
– Recursively pick node with smallest dom. share 
– Top-down equalize siblings 
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Ideal DRF allocations in 
hierarchy 
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Starvation 
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Outline 

• How to schedule multi-resources? (DRF) 
• Why is it challenging? 
• What’s our solution? (H-DRF) 
• How well does it work? 
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Hierarchical DRF (H-DRF) 
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• Leverage Static H-DRF 
 
• Add two invariants 

– Re-scale consumption vectors 
– Ignore terminated/blocked nodes 

 
 



Re-scaling Consumption 
Vectors  

• Intuition 
– No starvation from empty cluster 
– Rescale back as if started from empty cluster 

 
• Re-scaling 

– Choose sibling with lowest dominant share M 
– Rescale all siblings to have a dominant share M 
– Parent resource usage = sum of rescaled vectors 
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Example 
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Example 
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Hierarchical DRF (H-DRF) 
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• Leverage Static H-DRF 
 
• Add two invariants 

– Re-scale consumption vectors 
– Ignore terminated/blocked nodes 

 
 



Example 
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Ignore Blocked Nodes 

• A node is blocked iff 
– No more demand 
– Cannot be allocated more resources  
– All its children are blocked 

 
• Ignore blocked nodes 

– Only look at non-blocked siblings for min M 
– Rescale non-blocked nodes to dominant share M 
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Ignoring terminated/ blocked 
nodes  
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Outline 

• How to schedule multi-resources? (DRF) 
• Why is it challenging? 
• What’s our solution? (H-DRF) 
• How well does it work? 
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Evaluation 

• 50 EC2 nodes having 6 GB memory, 4 CPUs 
and 1 GPU each. 

 
• Evaluated against  

– Hadoop Capacity Scheduler (not Pareto) 
– Hadoop Capacity Scheduler (Pareto added) 

 
• Input : A 100-job schedule containing a mix 

of large and small jobs 

50 



Hierarchy Used 
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Conclusion 

• Hierarchical scheduling policies important 
 

• Hierarchical + Multi-resource = Challenging 
– Starvation, or violation of share guarantees 

 
• Proposed H-DRF 

– Generalization of DRF to hierarchies 
– Guards against starvation 
– Provides hierarchical share guarantee 
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Thank you 
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Algorithm 
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