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e Data centers run a large mix of workloads
..Jeading to diverse resource requirements



multi-resource scheduling necessary for

Isolation and efficiency



Background: multi-resource
fairness

 Dominant Resource Fairness (DRF)
— Share guarantee: guaranteed 1/n share
— Strategy-proof: lying can only hurt you

 Well understood
— Efficiency, extensions, limitations

 DRF now de-facto scheduler in Hadoop
— DREF capacity scheduler (HortonWorks)
— DREF fair scheduler (Cloudera)



Slight problem...

 Hadoop always had hierarchical policies

— Problem: DRF didn’t mention hierarchies

e Both industry implementations adapted
DRF to support hierarchies



What's hierarchical scheduling?
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Multi-Resource Scheduling Hierarchical Policies

Challenging

 Hadoop DRF schedulers can break down
— Leave resources unallocated, or
— Starve some users
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Problem Statement

How to generalize DRF to support
hierarchical policies?

Dominant Resource Fairness Hierarchical Scheduling
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Problem Statement

How to generalize DRF to support
hierarchical policies?

Dominant Resource Fairness Hierarchical Scheduling
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Outline

{ e How to schedule multi-resources? (DRF) ]
 Why is it challenging?
 What'’s our solution? (H-DRF)
« How well does it work?




Dominant Resource Fairness
(DRF)

 Dominant resource of a user is the resotirce she has biggest share of
— Dominant share of a user is her share of her dominant resource

Total resources: <100 Cpus, 100 Gpus> (2 types of resources)
User 1 demand: <3 Cpus, 2 Gpus> dom res: Cpu
User 2 demand: <2 Cpus, 3 Gpus> dom res: Gpu

e DRF Scheduler

— Max-min fair allocation on dominant shares
— ”"Equalize” the dominant share of all users

100%7}

User 2 . User 1( D. Share: 60%)

40 units

User 2
60 units

User 2 (D. Share: 60%)
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{ e How to schedule multi-resources? (DRF) ]
 Why is it challenging?
 What'’s our solution? (H-DRF)
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Hierarchy Flattening

e General technique

— Compute fair share of every leaf node
— Use weighted scheduler (weighted DRF)

Share guarantee: D Share Guara
0% of
T / . \
o, / B /"“\\
Anit [ aA | \m )
Share G Share Guarant ec: ' Share Guarantee: Share Guarante
25:% of cluster 25:% of cluster 25-% of cluster

e Works for any single-resource scheduler
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Hierarchy Flattening

Share Guarantee:
50 % of cluster

Share guarantee:
50 % of cluster
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Hierarchy Flattening

Share Guarantee:
50 % of cluster

Share guarantee:
50 % of cluster

Weight : 2 Weight : 1 Weight: 1
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Total resources: <100 Cpus, 100 Gpus>

Weight : 2 Weight : 1 Weight: 1
Demand: <1, 1> Demand: <1,0> Demand: <0,1>



Initial Allocation
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Final Allocation
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Hierarchical Share Guarantee
Violated

Share Guarantees:

Ads) 50 % @ 50 0/(}

S o

50 % 25 % 25 %

Final Allocation

100%
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50%
4 )
. 220
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How to schedule multi-resources? (DRF)

Why is it challenging?

What'’s our solution? (H-DRF)
How well does it work?



Static H-DRF

e Traverse tree top to bottom
— Recursively pick node with smallest dom. share
— Top-down equalize siblings

/
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Total Resources : < 100,100 >
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ldeal DRF allocations In

hierarchy
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Hierarchical share guarantees for every node



100%

50%

0%

50

r

r2

100%

50%

0%

r2

100%

50%

0%

r

r2




100%
50
(50% )
y dom share : 100%
070 ""rq 2

donyShare : 50%

4 )

100%
AdS 50%
50
0% —3 r2
Anlt ) <1 0>
100% 100% 100%
50% (50% 50%
50
0% T r2 \L°% 1 0% 7 r2




100%

50%

0%

51

r

r2

100%

50%

0%

r

r2

100%

50%

0%

r

r2




r2

<0,1>
100% 100% 100%
50% 50% 50%
100 0
0 0
0% r2 0% 7 r2 0% r2



Starvation

Allocation in a dynamic
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Hierarchical DRF (H-DRF)

Static H-DRF

1 - * Traverse tree top to bottom
° L eve rag e S tatl C H D R F - R:cursively pick node with smallest dom. Share

— Equalize siblings

e Add two invariants ‘/

— Re-scale consumption vectors

— [gnore terminated /blocked nodes

R={ry,-,rm) I> total resource capacities function (recursive) UpdateS(n.) function Alloc(W)

C={e1, * ,tm) > current consumed resources if n; is a leaf node then g = Ty

W resources to allocate > Assumption: R — C > W s;=maxU;;/R;forjeY while n; is not a leaf node (job) do

¥ set of nonzero resources in W return U; n; = node with lowest dominant share s; in

A (demanding), set of leaf nodes that use only resources else C(n;), which also has a task in its subtree

in Y or parents of demanding nodes Q = setof U;’s from UpdateS(n;) for children of n; that can be scheduled using W

Ty > root node in hierarchy tree f = maximum dominant share from () restricting to g =1y

C(n) t> children of any node n nodes in A and resources in Y D; = max‘_{'{!*'T_ 3 T;, s.t. T; is n;’s task demand vector

s (=1...n) > dominant shares Rescale demanding vectors in @) by f C=0C+ b;" & update consumed vector
Ui ={ui1,  ,uim) =1...n) > “scaled” resources U; = sum of vectors in Q U =U;+D; & update leaf only
Recompute s: UpdateS(n,) si=maxU;;/Rjforjey

Allocate the resources: Alloc(W) return U;
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Re-scaling Consumption
Vectors

e Intuition
— No starvation from empty cluster
— Rescale back as if started from empty cluster

 Re-scaling
— Choose sibling with lowest dominant share M
— Rescale all siblings to have a dominant share M
— Parent resource usage = sum of rescaled vectors



Example

Min. dom. share: Test (49)
Rescale siblings: QA <0, 49>
Dev’s vector: <49,0>+<0, 49> = <49,49>

<1,0>
100% 100%
50% 50%

0% =7 r2 0% —7 r2 41
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Hierarchical DRF (H-DRF)

Static H-DRF

1 - * Traverse tree top to bottom
° L eve rag e S tatl C H D R F - R:cursively pick node with smallest dom. Share

— Equalize siblings

e Add two invariants ‘/

— Re-scale consumption vectors

— [gnore terminated /blocked nodes

R={ry,-,rm) I> total resource capacities function (recursive) UpdateS(n.) function Alloc(W)

C={e1, * ,tm) > current consumed resources if n; is a leaf node then g = Ty

W resources to allocate > Assumption: R — C > W s;=maxU;;/R;forjeY while n; is not a leaf node (job) do

¥ set of nonzero resources in W return U; n; = node with lowest dominant share s; in

A (demanding), set of leaf nodes that use only resources else C(n;), which also has a task in its subtree

in Y or parents of demanding nodes Q = setof U;’s from UpdateS(n;) for children of n; that can be scheduled using W

Ty > root node in hierarchy tree f = maximum dominant share from () restricting to g =1y

C(n) t> children of any node n nodes in A and resources in Y D; = max‘_{'{!*'T_ 3 T;, s.t. T; is n;’s task demand vector

s (=1...n) > dominant shares Rescale demanding vectors in @) by f C=0C+ b;" & update consumed vector
Ui ={ui1,  ,uim) =1...n) > “scaled” resources U; = sum of vectors in Q U =U;+D; & update leaf only
Recompute s: UpdateS(n,) si=maxU;;/Rjforjey

Allocate the resources: Alloc(W) return U;
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Example

100%

‘Dev’ keeps getting
selected because it
has 0% dom share
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lgnore Blocked Nodes

e Anode is blocked iff

— No more demand

— Cannot be allocated more resources
— All its children are blocked

e Ignore blocked nodes
— Only look at non-blocked siblings for min M
— Rescale non-blocked nodes to dominant share M



Ignoring terminated/ blocked
nodes

100%

100% 100%
50% 50%
0% = 0%

<— BLOCKED
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Outline

How to schedule multi-resources? (DRF)
Why is it challenging?

What'’s our solution? (H-DRF)

How well does it work?
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Evaluation

50 EC2 nodes having 6 GB memory, 4 CPUs
and 1 GPU each.

e Evaluated against
— Hadoop Capacity Scheduler (not Pareto)
— Hadoop Capacity Scheduler (Pareto added)

e Input: A 100-job schedule containing a mix
of large and small jobs
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Conclusion

e Hierarchical scheduling policies important

e Hierarchical + Multi-resource = Challenging

— Starvation, or violation of share guarantees

 Proposed H-DRF

— Generalization of DRF to hierarchies
— Guards against starvation
— Provides hierarchical share guarantee

54



Thank you



Algorithm

R={ry,-,rm) I> total resource capacities
C ={c1," " ,Cm) I> current consumed resources
W resources to allocate > Assumption: R — C' > W
Y set of nonzero resources in W

A (demanding), set of leaf nodes that use only resources
in Y or parents of demanding nodes

Ty t> root node in hierarchy tree
C(n) r> children of any node n
8 (i=1...n) > dominant shares
Ui = (i1, ,Uim) (@ =1...n) > “scaled” resources
Recompute s: UpdateS(n;)

Allocate the resources: Alloc(W)

function (recursive) UpdateS(n.;)
if 7; is a leaf node then
s;i =maxU;;/R;forjeY
return U;
else
@ = setof U,’s from UpdateS(n;) for children of n;
f = maximum dominant share from ( restricting to
nodes in A and resources in Y
Rescale demanding vectors in @) by f
U; = sum of vectors in ¢}
si=maxU; ;/RjforjeYY
return [;

function Alloc(W)

i = Ny

T :ﬂj

_ Wi
D;i = max; {1; ;}
Uij = Ua; +-D?,

while n; 1s not a leaf node (job) do
n; = node with lowest dominant share s; in
C'(n;), which also has a task in its subtree
that can be scheduled using W

T, s.t. T; 18 n;’s task demand vector

> update consumed vector
> update leaf only 56
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