H-DRF: Hierarchical
Scheduling for Diverse

Datacenter Workloads

Ali Ghodsi

join work with

Arka Bhattacharya, David Culler, Eric Friedman,
Ion Stoica, Scott Shenker

UC Berkeley

lab

Background

&.' o® Maps
s) Reduces |

]

(=)}
1

w N wul
I I

Per task CPU demand (cores)
N

b 1 2 3 4 5 6 71 8 ¢
Per task memory demand (GB)

e Data centers run a large mix of workloads
..Jeading to diverse resource requirements

multi-resource scheduling necessary for

Isolation and efficiency

Background: multi-resource
fairness

 Dominant Resource Fairness (DRF)
— Share guarantee: guaranteed 1/n share
— Strategy-proof: lying can only hurt you

 Well understood
— Efficiency, extensions, limitations

 DRF now de-facto scheduler in Hadoop
— DREF capacity scheduler (HortonWorks)
— DREF fair scheduler (Cloudera)

Slight problem...

 Hadoop always had hierarchical policies

— Problem: DRF didn’t mention hierarchies

e Both industry implementations adapted
DRF to support hierarchies

What's hierarchical scheduling?

Hierarchical Scheduling

Entire Cluster

Ads (60%))

o

Analytics
(100% of ads)

(50% of Dev) (50% of Dev)

Hierarchical Scheduling

Entire Cluster

Ads (60%) Dev. (40%)

.

Analytics QA Test
(100% of ads) (50% of Dev) (50% of Dev)

| S I

Hierarchical Scheduling

Entire Cluster

Ads (60%) Dev. (40%)

O O

Analytics QA
(100% of ads) (100% of Dev)

Multi-Resource Scheduling Hierarchical Policies

Challenging

 Hadoop DRF schedulers can break down
— Leave resources unallocated, or
— Starve some users

10

Problem Statement

How to generalize DRF to support
hierarchical policies?

Dominant Resource Fairness Hierarchical Scheduling

b 3

; > T -
5 e _ .
5 e i
. & |
-*.. 'U‘ . P,
L J 1 a ' ' &
¥ e P . I
B . y
SPNY ey #.5 ;
» - -s’..: : -

T2 i .

P
G- ‘
:'.- .qt }._ 4 ‘R

Problem Statement

How to generalize DRF to support
hierarchical policies?

Dominant Resource Fairness Hierarchical Scheduling

e W P L Ty

- - ¢ }

T %% e
gt

* Sflare guarantee
'1/n share to leafs ;

Y : .

Work-conservation

Outline

{ e How to schedule multi-resources? (DRF)]
 Why is it challenging?
 What'’s our solution? (H-DRF)
« How well does it work?

Dominant Resource Fairness
(DRF)

 Dominant resource of a user is the resotirce she has biggest share of
— Dominant share of a user is her share of her dominant resource

Total resources: <100 Cpus, 100 Gpus> (2 types of resources)
User 1 demand: <3 Cpus, 2 Gpus> dom res: Cpu
User 2 demand: <2 Cpus, 3 Gpus> dom res: Gpu

e DRF Scheduler

— Max-min fair allocation on dominant shares
— ”"Equalize” the dominant share of all users

100%7}

User 2 . User 1(D. Share: 60%)

40 units

User 2
60 units

User 2 (D. Share: 60%)

14

Cpus Gpus

Outline

{ e How to schedule multi-resources? (DRF)]
 Why is it challenging?
 What'’s our solution? (H-DRF)
« How well does it work?

Hierarchy Flattening

e General technique

— Compute fair share of every leaf node
— Use weighted scheduler (weighted DRF)

Share guarantee: D Share Guara
0% of
T / . \
o, / B /"“\\
Anit [aA | \m)
Share G Share Guarant ec: ' Share Guarantee: Share Guarante
25:% of cluster 25:% of cluster 25-% of cluster

e Works for any single-resource scheduler

16

Hierarchy Flattening

Share Guarantee:
50 % of cluster

Share guarantee:
50 % of cluster

@

Share Guarantee: Share Guarantee: Share Guarantee:
50 % of cluster 25 9% of cluster 25 9% of cluster

Hierarchy Flattening

Share Guarantee:
50 % of cluster

Share guarantee:
50 % of cluster

Weight : 2 Weight : 1 Weight: 1

18

Total resources: <100 Cpus, 100 Gpus>

Weight : 2 Weight : 1 Weight: 1
Demand: <1, 1> Demand: <1,0> Demand: <0,1>

Initial Allocation

100
4 Anlt: 2 units | Anlt: 2 units
50 -
-+ Test: 1 unit | QA: 1 unit
5
0

Resource 1 Resource 2

Weight : 2 Weight : 1 Weight: 1
Demand: <1, 1> Demand: <1,0> Demand: <0,1>

Final Allocation

100%f
1 Anlt : 66% | Anlt : 66%

50%

JEESIRCRYZ QA : 33%

OO
/o Resource 1 Resource 2

Weight : 2 Weight : 1 Weight: 1
Demand: <1, 1> Demand: <1,0> Demand: <0,1>

Hierarchical Share Guarantee
Violated

Share Guarantees:

Ads) 50 % @ 50 0/(}

S o

50 % 25 % 25 %

Final Allocation

100%

Anlt: 66% | Anlt:66%

50%
4)
. 220
QA : 33% — Dev: 33%
0% = =)
—Reosource I—Resource 2

Outline

How to schedule multi-resources? (DRF)

Why is it challenging?

What'’s our solution? (H-DRF)
How well does it work?

Static H-DRF

e Traverse tree top to bottom
— Recursively pick node with smallest dom. share
— Top-down equalize siblings

/

Shaogaatee \,"- ShaeG arantee:

ShaoG arantee: 2 ShaeG arantee: - ShacGaa ntee:

Total Resources : < 100,100 >

<0,1>

Ads

Anlt

dém share : 0%

100%

50%

0%

r

(oo% \
50%
\O% 1 2)
<1,0>
Goo%
dom share : 0%
50%
r2 \0% 1 2

100%

50%

0%

r

r2

dom share: 0%

Goo% \
50%
0% —7 2
QA <0,1>
Goo% = D
dom shdre: o
50%

\o%

r

r2 /

100%
1
50%
1
o, I
0% 1 2

dém share : 0% dom share: 1%

- N
7 00% ™ 100%

0% I_r
0% 1 2
_ ri 2

Anlt <1,0> <1,0> <0,1>
100% 100% 100%
50% 50% 50%
1 1
% —m r2 0% PIT 0% 1 r2

Ads

Anlt

100%

50%

0%

r

100%0
1
50%
1 1
L
0% F r2 h
- 20
dé6m share : 1% dom share : 1%
0
7 00% ™ (100% ™
50%
50% .)
1
0% Ir_
0% 1 2
_ ri 2

<1,0> QA | <0,1>

(100% T (Too% [D

dom share : 1% dom shdre: o
50% 50%
1
M 2

r2 \o% Y, _ 0% —7 2

100%

50%

0%

r

r2

100%

50%

0%

r2

100%

50%

0%

r

r2

100%

50

50%

0%

r2

(OO‘V \ (100% \
0
AdS 50% 50%

5o

0%

\O% r1 2) 2/

Anlt <1,0> QA <0,1>

100% (OO% \ Goo% = \

50% 50%

50
ri r2 \0%

50%

0%

2)\ 0% 7 e

100%

50%

0%

50

r

r2

100%

50%

0%

r2

100%

50%

0%

r

r2

ldeal DRF allocations In

hierarchy
100%7
7 Anlt
50 %
50%- ° QA
100 %
0% 50 % 25 % 25 %

Resource 1l Resource 2

Hierarchical share guarantees for every node

100%

50%

0%

50

r

r2

100%

50%

0%

r2

100%

50%

0%

r

r2

100%
50
(50%)
y dom share : 100%
070 ""rq 2

donyShare : 50%

4)

100%
AdS 50%
50
0% —3 r2
Anlt) <1 0>
100% 100% 100%
50% (50% 50%
50
0% T r2 \L°% 1 0% 7 r2

100%

50%

0%

51

r

r2

100%

50%

0%

r

r2

100%

50%

0%

r

r2

r2

<0,1>
100% 100% 100%
50% 50% 50%
100 0
0 0
0% r2 0% 7 r2 0% r2

Starvation

Allocation in a dynamic

cluster
100%
50041 Anit QA
100% 100%
0%

0
Resource 1 Resource 2

Ideal allocation

100%

Resource
1

QA
100%

Resource 2

Outline

How to schedule multi-resources? (DRF)

Why is it challenging?

What'’s our solution? (H-DRF)
How well does it work?

Hierarchical DRF (H-DRF)

Static H-DRF

1 - * Traverse tree top to bottom
° L eve rag e S tatl C H D R F - R:cursively pick node with smallest dom. Share

— Equalize siblings

e Add two invariants ‘/

— Re-scale consumption vectors

— [gnore terminated /blocked nodes

R={ry,-,rm) I> total resource capacities function (recursive) UpdateS(n.) function Alloc(W)

C={e1, * ,tm) > current consumed resources if n; is a leaf node then g = Ty

W resources to allocate > Assumption: R — C > W s;=maxU;;/R;forjeY while n; is not a leaf node (job) do

¥ set of nonzero resources in W return U; n; = node with lowest dominant share s; in

A (demanding), set of leaf nodes that use only resources else C(n;), which also has a task in its subtree

in Y or parents of demanding nodes Q = setof U;’s from UpdateS(n;) for children of n; that can be scheduled using W

Ty > root node in hierarchy tree f = maximum dominant share from () restricting to g =1y

C(n) t> children of any node n nodes in A and resources in Y D; = max‘_{'{!*'T_ 3 T;, s.t. T; is n;’s task demand vector

s (=1...n) > dominant shares Rescale demanding vectors in @) by f C=0C+ b;" & update consumed vector
Ui ={ui1, ,uim) =1...n) > “scaled” resources U; = sum of vectors in Q U =U;+D; & update leaf only
Recompute s: UpdateS(n,) si=maxU;;/Rjforjey

Allocate the resources: Alloc(W) return U;

39

Re-scaling Consumption
Vectors

e Intuition
— No starvation from empty cluster
— Rescale back as if started from empty cluster

 Re-scaling
— Choose sibling with lowest dominant share M
— Rescale all siblings to have a dominant share M
— Parent resource usage = sum of rescaled vectors

Example

Min. dom. share: Test (49)
Rescale siblings: QA <0, 49>
Dev’s vector: <49,0>+<0, 49> = <49,49>

<1,0>
100% 100%
50% 50%

0% =7 r2 0% —7 r2 41

<1 ’ o>
100%
50%
0% =7

r2

100%

50%

0%

Example

100%

r

r2

r2

42

dom share : 49%

do - N

A share : 50%
\

100%
AdS 50%
5O
0% —3 r2 /
Anlt) <1 0> <0,1>
100% 100% 100%
50% 50% 50%
50
0% r2 0% r2 0% r2

100%

50%

0%

50

r

r2

100%

50%

0%

r2

100%

50%

0%

r

r2

Hierarchical DRF (H-DRF)

Static H-DRF

1 - * Traverse tree top to bottom
° L eve rag e S tatl C H D R F - R:cursively pick node with smallest dom. Share

— Equalize siblings

e Add two invariants ‘/

— Re-scale consumption vectors

— [gnore terminated /blocked nodes

R={ry,-,rm) I> total resource capacities function (recursive) UpdateS(n.) function Alloc(W)

C={e1, * ,tm) > current consumed resources if n; is a leaf node then g = Ty

W resources to allocate > Assumption: R — C > W s;=maxU;;/R;forjeY while n; is not a leaf node (job) do

¥ set of nonzero resources in W return U; n; = node with lowest dominant share s; in

A (demanding), set of leaf nodes that use only resources else C(n;), which also has a task in its subtree

in Y or parents of demanding nodes Q = setof U;’s from UpdateS(n;) for children of n; that can be scheduled using W

Ty > root node in hierarchy tree f = maximum dominant share from () restricting to g =1y

C(n) t> children of any node n nodes in A and resources in Y D; = max‘_{'{!*'T_ 3 T;, s.t. T; is n;’s task demand vector

s (=1...n) > dominant shares Rescale demanding vectors in @) by f C=0C+ b;" & update consumed vector
Ui ={ui1, ,uim) =1...n) > “scaled” resources U; = sum of vectors in Q U =U;+D; & update leaf only
Recompute s: UpdateS(n,) si=maxU;;/Rjforjey

Allocate the resources: Alloc(W) return U;

45

Example

100%

‘Dev’ keeps getting
selected because it
has 0% dom share

50%

ri r2

<0 / 1>
100% 100%
QA has no tasks
50% 50%
o)
0% =7 r2 0% —7 r2

lgnore Blocked Nodes

e Anode is blocked iff

— No more demand

— Cannot be allocated more resources
— All its children are blocked

e Ignore blocked nodes
— Only look at non-blocked siblings for min M
— Rescale non-blocked nodes to dominant share M

Ignoring terminated/ blocked
nodes

100%

100% 100%
50% 50%
0% = 0%

<— BLOCKED

48

Outline

How to schedule multi-resources? (DRF)
Why is it challenging?

What'’s our solution? (H-DRF)

How well does it work?

49

Evaluation

50 EC2 nodes having 6 GB memory, 4 CPUs
and 1 GPU each.

e Evaluated against
— Hadoop Capacity Scheduler (not Pareto)
— Hadoop Capacity Scheduler (Pareto added)

e Input: A 100-job schedule containing a mix
of large and small jobs

Hierarchy Used

@ @ NIargle

\
@ @ e Nsmall,2 Nemal 3 Niarge.s
1

Mixed Small Jobs Large Jobs

Median Throughput

200

(# Tasks)

150

[HEY
o
o

a1
o

83 79

NCPU

Throughput

B HDRF

O C.S-Current

Pareto violated

21

NGPU

9 9 14 14
mm—
NsmaII,1 NsmaII,z

Leaf Nodes

8

2

I

small,3

84

large,1

Median Throughput

(# Tasks)

200 -

150 -

=
o
o

a1
o

Throughput

® Pareto-Efficient C.S

Starvation

83

CPU

48 49

NGPU

N

small,1 small, 2

L_eaf Nodes

uH

N

DRF @

small,3 Nlarge,1

53

Conclusion

e Hierarchical scheduling policies important

e Hierarchical + Multi-resource = Challenging

— Starvation, or violation of share guarantees

 Proposed H-DRF

— Generalization of DRF to hierarchies
— Guards against starvation
— Provides hierarchical share guarantee

54

Thank you

Algorithm

R={ry,-,rm) I> total resource capacities
C ={c1," " ,Cm) I> current consumed resources
W resources to allocate > Assumption: R — C' > W
Y set of nonzero resources in W

A (demanding), set of leaf nodes that use only resources
in Y or parents of demanding nodes

Ty t> root node in hierarchy tree
C(n) r> children of any node n
8 (i=1...n) > dominant shares
Ui = (i1, ,Uim) (@ =1...n) > “scaled” resources
Recompute s: UpdateS(n;)

Allocate the resources: Alloc(W)

function (recursive) UpdateS(n.;)
if 7; is a leaf node then
s;i =maxU;;/R;forjeY
return U;
else
@ = setof U,’s from UpdateS(n;) for children of n;
f = maximum dominant share from (restricting to
nodes in A and resources in Y
Rescale demanding vectors in @) by f
U; = sum of vectors in ¢}
si=maxU; ;/RjforjeYY
return [;

function Alloc(W)

i = Ny

T :ﬂj

_ Wi
D;i = max; {1; ;}
Uij = Ua; +-D?,

while n; 1s not a leaf node (job) do
n; = node with lowest dominant share s; in
C'(n;), which also has a task in its subtree
that can be scheduled using W

T, s.t. T; 18 n;’s task demand vector

> update consumed vector
> update leaf only 56

	H-DRF: Hierarchical Scheduling for Diverse Datacenter Workloads
	Background
	Slide Number 3
	Background: multi-resource fairness
	Slight problem…
	Slide Number 6
	Hierarchical Scheduling
	Hierarchical Scheduling
	Hierarchical Scheduling
	Challenging
	Problem Statement
	Problem Statement
	Outline
	Dominant Resource Fairness (DRF)
	Outline
	Hierarchy Flattening
	Hierarchy Flattening
	Hierarchy Flattening
	Slide Number 19
	Initial Allocation
	Final Allocation
	Hierarchical Share Guarantee Violated
	Outline
	Static H-DRF
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Ideal DRF allocations in hierarchy
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Starvation
	Outline
	Hierarchical DRF (H-DRF)
	Re-scaling Consumption Vectors
	Example
	Example
	Slide Number 43
	Slide Number 44
	Hierarchical DRF (H-DRF)
	Example
	Ignore Blocked Nodes
	Ignoring terminated/ blocked nodes
	Outline
	Evaluation
	Hierarchy Used
	Throughput
	Throughput
	Conclusion
	Thank you
	Algorithm

