
H-DRF: Hierarchical
Scheduling for Diverse
Datacenter Workloads

Ali Ghodsi
join work with

Arka Bhattacharya, David Culler, Eric Friedman,
Ion Stoica, Scott Shenker

UC Berkeley

1

Background

• Data centers run a large mix of workloads
…leading to diverse resource requirements

2

3

multi-resource scheduling necessary for
isolation and efficiency

Background: multi-resource
fairness

• Dominant Resource Fairness (DRF)
– Share guarantee: guaranteed 1/n share
– Strategy-proof: lying can only hurt you

• Well understood

– Efficiency, extensions, limitations

• DRF now de-facto scheduler in Hadoop
– DRF capacity scheduler (HortonWorks)
– DRF fair scheduler (Cloudera)

4

Slight problem…

• Hadoop always had hierarchical policies
– Problem: DRF didn’t mention hierarchies

• Both industry implementations adapted

DRF to support hierarchies

5

6

What’s hierarchical scheduling?

Hierarchical Scheduling

7

Ads (60%)

Analytics
(100% of ads)

Dev. (40%)

QA
(50% of Dev)

Test
(50% of Dev)

Entire Cluster

Siblings

Hierarchical Scheduling

8

Entire Cluster

Ads (60%) Dev. (40%)

QA
(50% of Dev)

Test
(50% of Dev)

Analytics
(100% of ads)

Hierarchical Scheduling

9

Entire Cluster

Ads (60%) Dev. (40%)

QA
(100% of Dev)

Analytics
(100% of ads)

Challenging

• Hadoop DRF schedulers can break down
– Leave resources unallocated, or
– Starve some users

10

Multi-Resource Scheduling Hierarchical Policies

+
=

Problem Statement

11

How to generalize DRF to support
hierarchical policies?

Dominant Resource Fairness Hierarchical Scheduling

+

Problem Statement

12

How to generalize DRF to support
hierarchical policies?

Dominant Resource Fairness Hierarchical Scheduling

+ • Share guarantee
1/n share to leafs

• Pareto efficiency
Work-conservation

• Hierarchical share
guarantee
1/n to every node

• Pareto efficiency
Work-conservation

Outline

• How to schedule multi-resources? (DRF)
• Why is it challenging?
• What’s our solution? (H-DRF)
• How well does it work?

13

Dominant Resource Fairness
(DRF)

• Dominant resource of a user is the resource she has biggest share of
– Dominant share of a user is her share of her dominant resource

 Total resources: <100 Cpus, 100 Gpus> (2 types of resources)
 User 1 demand: <3 Cpus, 2 Gpus> dom res: Cpu
 User 2 demand: <2 Cpus, 3 Gpus> dom res: Gpu

• DRF Scheduler
– Max-min fair allocation on dominant shares
– ”Equalize” the dominant share of all users

14
Cpus Gpus

100%

50%

0%

User 2
40 units

User 2
60 units

User 1
60 units

User 1
40 units

User 1(D. Share: 60%)

 User 2 (D. Share: 60%)

Outline

• How to schedule multi-resources? (DRF)
• Why is it challenging?
• What’s our solution? (H-DRF)
• How well does it work?

15

Hierarchy Flattening

• General technique
– Compute fair share of every leaf node
– Use weighted scheduler (weighted DRF)

• Works for any single-resource scheduler

16

Share Guarantee:
50 % of cluster

Ads

Dev

Anlt QA
Test

Share guarantee:
50 % of cluster

Share Guarantee:
50 % of cluster

Share Guarantee:
25 % of cluster

Share Guarantee:
25 % of cluster

Hierarchy Flattening

Ads

Dev

Anlt QA
Test

Share guarantee:
50 % of cluster

Share Guarantee:
50 % of cluster

Hierarchy Flattening

18

Weight : 2 Weight : 1 Weight : 1

Anlt QA
Test

Demand: <1, 1>

Demand: <1,0>

Demand: <0,1>

Weight : 2 Weight : 1 Weight : 1

Total resources: <100 Cpus, 100 Gpus>

Initial Allocation

100

50

0 Resource 1 Resource 2

Test: 1 unit QA: 1 unit

 Anlt: 2 units Anlt: 2 units

Anlt QA
Test

Demand: <1, 1>

Demand: <1,0>

Demand: <0,1>

Weight : 2 Weight : 1 Weight : 1

Final Allocation

100%

50%

0% Resource 1 Resource 2

Test : 33% QA : 33%

Anlt : 66% Anlt : 66%

Anlt QA
Test

Demand: <1, 1>

Demand: <1,0>

Demand: <0,1>

Weight : 2 Weight : 1 Weight : 1

50 %

Share Guarantees:

Ads

Anlt

Dev

Test QA

50 % 50 %

25 % 25 %

100%

50%

0%
Resource 1 Resource 2

Test : 33% QA : 33%

Anlt : 66% Anlt : 66%

Final Allocation

Hierarchical Share Guarantee
Violated

Dev : 33%

Outline

• How to schedule multi-resources? (DRF)
• Why is it challenging?
• What’s our solution? (H-DRF)
• How well does it work?

23

Static H-DRF

• Traverse tree top to bottom
– Recursively pick node with smallest dom. share
– Top-down equalize siblings

24

Ads

Dev

Anlt QA
Test

Total Resources : < 100,100 >

<1,0> <1,0> <0,1>

Ads

Dev

Anlt QA
Test

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2 dom share : 0% dom share : 0%

dom share : 0% dom share : 0%

<1,0> <1,0> <0,1>

Ads

Dev

Anlt QA
Test

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2 dom share : 1% dom share : 0%

1

1

1

1

1

1

<1,0> <1,0> <0,1>

Ads

Dev

Anlt QA
Test

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2 dom share : 1% dom share : 1%

1 1

1 1

1

1

1 1

1

dom share : 0% dom share : 1%

<1,0> <1,0> <0,1>

Ads

Dev

Anlt QA
Test

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

<1,0> <1,0> <0,1>

Ads

Dev

Anlt QA
Test

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

50 50 50

50 50 50

50

50 50

<1,0> <1,0> <0,1>

Ads

Dev

Anlt QA
Test

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

50 50 100

100 50 50

50

50 100

<1,0> <1,0> <0,1>

Ideal DRF allocations in
hierarchy

32

100%

50%

0% Resource 1 Resource 2

Anlt
50 %

Test
50 %

QA
100 %

Hierarchical share guarantees for every node

50 %

Ads

Anlt

Dev

Test QA

50 % 50 %

25 % 25 %

Ads

Dev

Anlt QA
Test <1,0> <1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

50 50 100

100 50 50

50

50 100

Ads

Dev

Anlt QA
Test <1,0> <1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

50 49 100

100 49 50

50

49 100
dom share : 100%

dom share : 50%

Ads

Dev

Anlt QA
Test <1,0> <1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

51 49 100

100 49 51

51

49 100

Ads

Dev

Anlt QA
Test <1,0> <1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100 100

100 100%

100 100

0

0

Starvation

37

100%

50%

0% Resource 1 Resource 2

Anlt
100%

QA
100%

100%

50%

0% Resource
1

Resource 2

Anlt
50%

Test
50%

QA
100%

Allocation in a dynamic
cluster

Ideal allocation

Outline

• How to schedule multi-resources? (DRF)
• Why is it challenging?
• What’s our solution? (H-DRF)
• How well does it work?

38

Hierarchical DRF (H-DRF)

39

• Leverage Static H-DRF

• Add two invariants

– Re-scale consumption vectors
– Ignore terminated/blocked nodes

Re-scaling Consumption
Vectors

• Intuition
– No starvation from empty cluster
– Rescale back as if started from empty cluster

• Re-scaling

– Choose sibling with lowest dominant share M
– Rescale all siblings to have a dominant share M
– Parent resource usage = sum of rescaled vectors

 40

Example

41

Dev

QA
Test

<1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100

100 49

Min. dom. share: Test (49)
Rescale siblings: QA <0, 49>
Dev’s vector: <49,0>+<0, 49> = <49,49>

Example

42

Dev

QA
Test

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

49

100

49

49

<1,0> <0,1>

Ads

Dev

Anlt QA
Test <1,0> <1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

50

49

49 100

49 50

dom share : 49%
dom share : 50%

Ads

Dev

Anlt QA
Test <1,0> <1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

50 50 100

50 50 50

Hierarchical DRF (H-DRF)

45

• Leverage Static H-DRF

• Add two invariants

– Re-scale consumption vectors
– Ignore terminated/blocked nodes

Example

46

Dev

QA
Test <1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100

100 49

‘Dev’ keeps getting
selected because it
has 0% dom share

0

QA has no tasks

0 0

Ignore Blocked Nodes

• A node is blocked iff
– No more demand
– Cannot be allocated more resources
– All its children are blocked

• Ignore blocked nodes

– Only look at non-blocked siblings for min M
– Rescale non-blocked nodes to dominant share M

 47

Ignoring terminated/ blocked
nodes

48

Dev

QA
Test <1,0> <0,1>

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100%

0%

50%

r1 r2

100

100 49 0

0 0

BLOCKED

49

Outline

• How to schedule multi-resources? (DRF)
• Why is it challenging?
• What’s our solution? (H-DRF)
• How well does it work?

49

Evaluation

• 50 EC2 nodes having 6 GB memory, 4 CPUs
and 1 GPU each.

• Evaluated against

– Hadoop Capacity Scheduler (not Pareto)
– Hadoop Capacity Scheduler (Pareto added)

• Input : A 100-job schedule containing a mix

of large and small jobs

50

Hierarchy Used

51

Nmixed

Nsmall

NCPU
Nsmall,3

Nsmall,
1

NGPU

Nlarge

Nlarge,1 Nsmall,2

Small Jobs Large Jobs Mixed

83

49

9 14 8

84 79

21
9 14 7

77

0

50

100

150

200

M
ed

ia
n

T
hr

ou
gh

pu
t

(#
 T

as
ks

)

Leaf Nodes

HDRF C.S-Current

NCPU NGPU Nsmall,1 Nsmall,2 Nsmall,3 Nlarge,1

Throughput

52

Pareto violated

1

48

6 11 6

158

83

49

9 14 8

84

0

50

100

150

200

M
ed

ia
n

T
hr

ou
gh

pu
t

(#
 T

as
ks

)

Leaf Nodes

Pareto-Efficient C.S HDRF

NCPU NGPU Nsmall,1 Nsmall,2 Nsmall,3 Nlarge,1

Throughput

53

Starvation

Conclusion

• Hierarchical scheduling policies important

• Hierarchical + Multi-resource = Challenging
– Starvation, or violation of share guarantees

• Proposed H-DRF

– Generalization of DRF to hierarchies
– Guards against starvation
– Provides hierarchical share guarantee

54

Thank you

55

Algorithm

56

	H-DRF: Hierarchical Scheduling for Diverse Datacenter Workloads
	Background
	Slide Number 3
	Background: multi-resource fairness
	Slight problem…
	Slide Number 6
	Hierarchical Scheduling
	Hierarchical Scheduling
	Hierarchical Scheduling
	Challenging
	Problem Statement
	Problem Statement
	Outline
	Dominant Resource Fairness (DRF)
	Outline
	Hierarchy Flattening
	Hierarchy Flattening
	Hierarchy Flattening
	Slide Number 19
	Initial Allocation
	Final Allocation
	Hierarchical Share Guarantee Violated
	Outline
	Static H-DRF
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Ideal DRF allocations in hierarchy
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Starvation
	Outline
	Hierarchical DRF (H-DRF)
	Re-scaling Consumption Vectors
	Example
	Example
	Slide Number 43
	Slide Number 44
	Hierarchical DRF (H-DRF)
	Example
	Ignore Blocked Nodes
	Ignoring terminated/ blocked nodes
	Outline
	Evaluation
	Hierarchy Used
	Throughput
	Throughput
	Conclusion
	Thank you
	Algorithm

