s ONE Il(IES NOT

WALK INTII A CONCURRENT HASH
- TABLE

memegenerator.net

Catching up with
Cuckoo

Bin Fan, Xiaozhou Li, Michael Kaminsky, Mike Freedman, David G. Andersen
CMU, Intel, Princeton

Hashing - it's useful!

CS 101 version

* map["dog’] =5

e printmap[“dog”’] —> 5

Hashing - it's fun!

CS 201 version

 O(1) insert/lookup / delete
e Linear probing

e Chaining

Standard methods: Either slow,
non-concurrent, or waste memory

—Hasning - it's cool again!

Grad school

e Cuckoo Hashing
e Seriously memory efficient

* But before our work, slow in practice, hon-
concurrent (or inefficient)

2,4

Prior Work Sl associative

Cuckoo
cuckoo

Building JRICEe glu"‘:('r;g el
Block #1 g A . Cuckoo

bl
......
~ -~
~~~~~
~ il I

-~
-~
™
-

ARSI 7o cucco I Orie I Corer
New Toys Filter .
Cuckoo Cuckoo




* Hash item to two possible

buckets
H1(key) —> bucket 1
H2(key) —> bucket 2

4
T

Cuckoo Hashing

i ' .
i ' .
i ‘' .
i ' .
i 5 .
i ¥ .
I ' .
i ' .
i 4 .
i 5 .
e : :
| ‘ .
| ‘ .
I 4 .
i b ‘

(k) (V) | (V)| (V)

What if keys are not stored in table?




V

Expensive Key Retrieval

* Why not store key-value in table?
— support variable-len keys

— to store key-value in external
storage jookup W O\

P adV L B

* Lookup requires multiple < Q \y\

retrievals for key <RV RY] TR
comparison




Partial-key Cuckoo Hashing

— Definition: a tag
— a small hash value, 1 Byte in our implementation
—tag (V“foo”) =0x3f

* Store tags in table to reduce false retrievals
— Read K-V only on tag match

--~~.mismatch JUPTE -
Iookup N : N/ . N\ =" : S~




'

Cuckoo Move without *Pointer

use current location to compute alternate

bl = HASH (tag(x)) // 1lst bucket

.
‘e
.
.
.
‘e
.

3
‘e

b2 = bl ¢ HASH(tag(x))., // 2nd bucket
;, tag, d /
alt = cur @ HASH(tag(x)) //
b tag,p




Building Block #1: Partial-key cuckoo hashing

Benefits:

v Compact, fixed-sized fields in hash table
v Only 1+€ pointer dereferences for lookup

v No pointer dereference needed for cuckooing

Hey, Dave - haven't you heard of multicore?




2,4

Prior Work ic associative

Cuckoo
cuckoo

Building QIR glu"‘:('r;g e
Block #1 s . Cuckoo

bl
......
~ -~
~~~~~
~ il I

-~
-~
™
-

ARSI 7o cucco I O I Corer
New Toys Filter .
Cuckoo Cuckoo

Why “Move The Hole”?

* During insertion...

* one key is always “floating”

* That key cannot be found

by get()

* Prior solutions caused

previous concurrent

cuckoo tables to waste

space [Herlihy]

key

y
S

~N O O A WON - O

i ' .
i ' '
i ' .
i ' .
] ' N
i ' .
] ' .
i 5 '
i ' .
i ' '
s :~ :
| ' .
] ' .
I ' .
§ ' .

'
"

.

kv) (V) | (V) (k)

Move The Hole: Find Path First

Then move hole backwards 1 |Hole |

.
.

' "

- b .
1 i ' .

i ' C .

i ' .

é :- :

i | ‘ .

‘ . .

§ | . .

'] . .

L
L

L
L

v Items never disappear

', g(k,v) (k,v)g (k,v)
v Only individual swaps B :

must be atomic

Full Tables: Lots of Motion

Up to 500
moves needed
at 95%
occupancy!

Large potential
for concurrency
conflicts

Optimization Strategy

 Move work outside lock (done: search first)

e Reduce number of moves needed”?”

Breadth-first search for hole

instead of depth-first ~_

Same search work

Less move work:

~500 bins examined

~5 bins moved

Effective for locking, flash, NVRAM, ...

2,4

Prior Work Bkl associative

Cuckoo
cuckoo

Building IR glu"‘:(";g il
Block #1 s . Cuckoo

-
...
-

-~
-~
™
-

cwesome RELEEY AN ek
New Toys Filter
Cuckoo Cuckoo

Historical Reminder

MemC3 nsdi2013
4.3M ops/sec over the network

Single-writer;
optimized for ~95% reads (Facebook)

Million Lookups/sec

Hash Table Microbenchmark

Low Power Xeon CPU (12 cores), 12 MB L3 cache
6 threads reading a ~ 1GB hash table

21.54

12.79

1.74

Base Chaining Optimistic
w/ Bkt Lock Cuckoo

20

2,4

Prior Work Bkl associative

Cuckoo
cuckoo

Building IR glu"‘:(";g il
Block #1 s . Cuckoo

-
...
-

-~
-~
™
-

Awesome RELEEd [RRAGEN e
New Toys Filter
Cuckoo Cuckoo

Interlude; Hardware
Transactional Memory

* We made two versions of Concurrent Cuckoo:
* Fine-grained conventional spinlocks

e One that used Intel's new Hardware Transactional
Memory (TSX)

e They perform similarly. I'll show the TSX results.

4 core

Without Concurrency Lo
Optimization

—e— (Cuckoo hash table w/ TSX

- ®- (Cuckoo hash table

—*— Google dense_hash_map w/ TSX

- #- Google dense _hash_map

—m— C++11 std::unordered map w/ TSX
- C++11 std::unordered _map

o0
|
|

(@)

N

N

Throughput
(million reqs per sec)

Number of threads

Total throughput drops with more threads

Optimizations: 8 thread throughput 4 core

Haswell
Desktop

1 load 0-0.95 (overall) B load 0.9-0.95
29.21

7.94
1.38 1.84 0.97 0.99 1.11

vs. The Competition

Throughput
(million reqgs per sec)

Throughput
(million regs per sec)

4 core
100% Insert Haswell

Desktop

Cuckoo-TSX

Cuckoo-Spinlock
TBB hash_map

Cuckoo-opt-global

Number of threads

100% Insert 50% Insert 10% Insert

Number of threads Number of threads Number of threads

Throughput
(million reqgs per sec)

Xeon

100% Insert 16 Core
80— . .

70} —®— cuckoo+ with fine-grained locking -
60 —*— Intel TBB concurrent_hash_map

Throughput
(million reqs per sec)

1 2 4 8 16
Number of cores

100% Insert 50% Insert

10% Insert
80— .

80—

70} —®— cuckoo+ with fine-grained locking -
601 —*— Intel TBB concurrent_hash_map

50

40}

30t :
20t :
10t :

12 4 8 16 12 4 8 16 12 4 8 16
Number of cores Number of cores Number of cores

Concurrent beats non-
concurrent

Google dense_hash_map 64 bit key/value pairs
C++11 std:unordered_map read-to-write ratio = 1:1
optimistic concurrent cuckoo 120 million keys inserted

Intel TBB concurrent_hash_map

(*) cuckoo+ with fine-grained locking
(*) cuckoo+ with HTM

O 5 10 15 20 25 30 35 40
Throughput (million regs per sec)

Concurrent Cuckoo

A really tasty memory-efticient,
concurrent hash table

2,4

Prior Work Bkl associative

Cuckoo
cuckoo

Ongoing work:

Building Intel DPDK + alternate hash designs =
Block #1 70 million key/value ops/sec
over the network
Awesome Optimistic Concurrent
The Cuckoo
. Multi-Reader Multi-Writer
New Toys Filter e .

Prior Work Bl

Cuckoo

2.4
associative
cuckoo

Intel DPDK

BUIldlng Partial-Key
Block #1 oy
Awesome The Cuckoo

New Toys Filter

BUiIding “Move the
Block #2 e

Cuckoo

..
N ..
v ..

-~
-~
™
-

Concurrent
Multi-Writer

Optimistic
Multi-Reader
Cuckoo Cuckoo

