

Catching up with
Cuckoo

Bin Fan, Xiaozhou Li, Michael Kaminsky, Mike Freedman, David G. Andersen
CMU, Intel, Princeton

Hashing - it’s useful!

• map[“dog”] = 5

• print map[“dog”] —> 5

CS 101 version

Hashing - it’s fun!

• O(1) insert / lookup / delete

• Linear probing

• Chaining

CS 201 version

Standard methods: Either slow,
non-concurrent, or waste memory

Hashing - it’s cool again!

• Cuckoo Hashing

• Seriously memory efficient

• But before our work, slow in practice, non-
concurrent (or inefficient)

Grad school

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Cuckoo	
 Hashing
• Hash	
 item	
 to	
 two	
 possible 
buckets 
H1(key)	
 —>	
 bucket	
 1 
H2(key)	
 —>	
 bucket	
 2 

Bac
kgro

und

�7

A B C D

E F G H

I J K L

X

What	
 if	
 keys	
 are	
 not	
 stored	
 in	
 table?

Expensive	
 Key	
 Retrieval	

• Why	
 not	
 store	
 key-­‐value	
 in	
 table?	

– support	
 variable-­‐len	
 keys	

– to	
 store	
 key-­‐value	
 in	
 external	

storage	

!

• Lookup	
 requires	
 multiple	

retrievals	
 for	
 key	

comparison	

K V

lookup

K V K V K V

Cha
llen

ge

�8

Partial-­‐key	
 Cuckoo	
 Hashing
– Definition:	
 	
 a	
 tag	
 	

– a	
 small	
 hash	
 value,	
 1	
 Byte	
 in	
 our	
 implementation	

– tag(“foo”) =	
 0x3f	

!

• Store	
 tags	
 in	
 table	
 to	
 reduce	
 false	
 retrievals	

– Read	
 K-­‐V	
 only	
 on	
 tag	
 match

T T T T K V
lookup

mismatch

match!!

Solu
tion

�9

Cuckoo	
 Move	
 without	
 *Pointer

�10

Solu
tion

b1 = HASH(tag(x)) // 1st bucket
b2 = b1 HASH(tag(x)) // 2nd bucket

use	
 current	
 location	
 to	
 compute	
 alternate

alt = cur HASH(tag(x))
tag,p

tag,p

x, value

Building Block #1: Partial-key cuckoo hashing

!

Benefits:

✓ Compact, fixed-sized fields in hash table!

✓ Only 1+𝜀 pointer dereferences for lookup!

✓ No pointer dereference needed for cuckooing

Hey, Dave - haven’t you heard of multicore?

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Why	
 “Move	
 The	
 Hole”?
• During	
 insertion…	

• one	
 key	
 is	
 always	
 “floating”	

• That	
 key	
 cannot	
 be	
 found  
by	
 get()	

!

• Prior	
 solutions	
 caused  
previous	
 concurrent  
cuckoo	
 tables	
 to	
 waste 
space	
 [Herlihy]

�13

A B C D

E F G H

I J K L

X

Move	
 The	
 Hole:	
 	
 Find	
 Path	
 First

�14

A B C D

E F G H

I J K L

X

E

I

HoleThen move hole backwards

✓ Items never disappear!
✓ Only individual swaps

must be atomic

Full Tables: Lots of Motion

E

Up to 500
moves needed

at 95%
occupancy!

Large potential!
for concurrency!

conflicts

Optimization Strategy

• Move work outside lock (done: search first)

• Reduce number of moves needed??

Breadth-first search for hole  
instead of depth-first

Same search work!
Less move work:!

 
~500 bins examined!

~5 bins moved

Effective for locking, flash, NVRAM, …

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Historical Reminder
MemC3 nsdi2013

4.3M ops/sec over the network

Single-writer;!
optimized for ~95% reads (Facebook)

1.74% 1.9%

12.79% 14.28%

21.54%

47.89%

0%

10%

20%

30%

40%

50%

60%

Hash	
 Table	
 Microbenchmark

Lookups	
 all	
 hit

6	
 threads	
 reading	
 a	
 ~	
 1GB	
 hash	
 table

Base Chaining  
w/ Bkt Lock

Optimistic  
Cuckoo

Base Chaining  
w/ Bkt Lock

Optimistic  
Cuckoo

Lookups	
 all	
 miss

Low	
 Power	
 Xeon	
 CPU	
 (12	
 cores),	
 12	
 MB	
 L3	
 cache

M
ill
io
n	

Lo
ok
up

s/
se
c

235%

68%

�20

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Interlude: Hardware
Transactional Memory

• We made two versions of Concurrent Cuckoo:

• Fine-grained conventional spinlocks

• One that used Intel’s new Hardware Transactional
Memory (TSX)

!

• They perform similarly. I’ll show the TSX results.

Without Concurrency
Optimization

Total throughput drops with more threads

4 core
Haswell
Desktop

Optimizations:	
 	
 8	
 thread	
 throughput

Baseline: Optimistic Cuckoo with DFS

+TSX-glibc

+Our TSX lib

+ search first, lock later

+ BFS

4 core
Haswell
Desktop

vs. The Competition

Cuckoo-TSX
Cuckoo-Spinlock
TBB hash_map

Cuckoo-opt-global

4 core
Haswell
Desktop

16 Core
Xeon

Concurrent beats non-
concurrent

Concurrent Cuckoo
!

A really tasty memory-efficient,
concurrent hash table

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Ongoing work: 
Intel DPDK + alternate hash designs =

!
70 million key/value ops/sec  

over the network

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Intel DPDK

