

Catching up with
Cuckoo

Bin Fan, Xiaozhou Li, Michael Kaminsky, Mike Freedman, David G. Andersen
CMU, Intel, Princeton

Hashing - it’s useful!

• map[“dog”] = 5

• print map[“dog”] —> 5

CS 101 version

Hashing - it’s fun!

• O(1) insert / lookup / delete

• Linear probing

• Chaining

CS 201 version

Standard methods: Either slow,
non-concurrent, or waste memory

Hashing - it’s cool again!

• Cuckoo Hashing

• Seriously memory efficient

• But before our work, slow in practice, non-
concurrent (or inefficient)

Grad school

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Cuckoo	 Hashing
• Hash	 item	 to	 two	 possible 
buckets 
H1(key)	 —>	 bucket	 1 
H2(key)	 —>	 bucket	 2 

Bac
kgro

und

�7

A B C D

E F G H

I J K L

X

What	 if	 keys	 are	 not	 stored	 in	 table?

Expensive	 Key	 Retrieval	

• Why	 not	 store	 key-‐value	 in	 table?	
– support	 variable-‐len	 keys	
– to	 store	 key-‐value	 in	 external	
storage	
!

• Lookup	 requires	 multiple	
retrievals	 for	 key	
comparison	

K V

lookup

K V K V K V

Cha
llen

ge

�8

Partial-‐key	 Cuckoo	 Hashing
– Definition:	 	 a	 tag	 	
– a	 small	 hash	 value,	 1	 Byte	 in	 our	 implementation	
– tag(“foo”) =	 0x3f	
!

• Store	 tags	 in	 table	 to	 reduce	 false	 retrievals	
– Read	 K-‐V	 only	 on	 tag	 match

T T T T K V
lookup

mismatch

match!!

Solu
tion

�9

Cuckoo	 Move	 without	 *Pointer

�10

Solu
tion

b1 = HASH(tag(x)) // 1st bucket
b2 = b1 HASH(tag(x)) // 2nd bucket

use	 current	 location	 to	 compute	 alternate

alt = cur HASH(tag(x))
tag,p

tag,p

x, value

Building Block #1: Partial-key cuckoo hashing

!

Benefits:

✓ Compact, fixed-sized fields in hash table!

✓ Only 1+𝜀 pointer dereferences for lookup!

✓ No pointer dereference needed for cuckooing

Hey, Dave - haven’t you heard of multicore?

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Why	 “Move	 The	 Hole”?
• During	 insertion…	
• one	 key	 is	 always	 “floating”	
• That	 key	 cannot	 be	 found  
by	 get()	

!

• Prior	 solutions	 caused  
previous	 concurrent  
cuckoo	 tables	 to	 waste 
space	 [Herlihy]

�13

A B C D

E F G H

I J K L

X

Move	 The	 Hole:	 	 Find	 Path	 First

�14

A B C D

E F G H

I J K L

X

E

I

HoleThen move hole backwards

✓ Items never disappear!
✓ Only individual swaps

must be atomic

Full Tables: Lots of Motion

E

Up to 500
moves needed

at 95%
occupancy!

Large potential!
for concurrency!

conflicts

Optimization Strategy

• Move work outside lock (done: search first)

• Reduce number of moves needed??

Breadth-first search for hole  
instead of depth-first

Same search work!
Less move work:!

 
~500 bins examined!

~5 bins moved

Effective for locking, flash, NVRAM, …

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Historical Reminder
MemC3 nsdi2013

4.3M ops/sec over the network

Single-writer;!
optimized for ~95% reads (Facebook)

1.74% 1.9%

12.79% 14.28%

21.54%

47.89%

0%

10%

20%

30%

40%

50%

60%

Hash	 Table	 Microbenchmark

Lookups	 all	 hit

6	 threads	 reading	 a	 ~	 1GB	 hash	 table

Base Chaining  
w/ Bkt Lock

Optimistic  
Cuckoo

Base Chaining  
w/ Bkt Lock

Optimistic  
Cuckoo

Lookups	 all	 miss

Low	 Power	 Xeon	 CPU	 (12	 cores),	 12	 MB	 L3	 cache

M
ill
io
n	
Lo
ok
up

s/
se
c

235%

68%

�20

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Interlude: Hardware
Transactional Memory

• We made two versions of Concurrent Cuckoo:

• Fine-grained conventional spinlocks

• One that used Intel’s new Hardware Transactional
Memory (TSX)

!

• They perform similarly. I’ll show the TSX results.

Without Concurrency
Optimization

Total throughput drops with more threads

4 core
Haswell
Desktop

Optimizations:	 	 8	 thread	 throughput

Baseline: Optimistic Cuckoo with DFS

+TSX-glibc

+Our TSX lib

+ search first, lock later

+ BFS

4 core
Haswell
Desktop

vs. The Competition

Cuckoo-TSX
Cuckoo-Spinlock
TBB hash_map

Cuckoo-opt-global

4 core
Haswell
Desktop

16 Core
Xeon

Concurrent beats non-
concurrent

Concurrent Cuckoo
!

A really tasty memory-efficient,
concurrent hash table

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Ongoing work: 
Intel DPDK + alternate hash designs =

!
70 million key/value ops/sec  

over the network

Basic
Cuckoo

2,4
associative

cuckoo

Partial-Key
Cuckoo

Optimistic
Multi-Reader

Cuckoo

Concurrent
Multi-Writer

Cuckoo

The Cuckoo
Filter

Prior Work

!
Building!
Block #1

Awesome!
New Toys

“Move the
Hole”

Cuckoo

Building
Block #2

Intel DPDK

