Out-of-core Metadata for HDFS

Lin Xiao, Garth Gibson (CMU)

Motivation

- HDFS Namenode(NN) stores metadata in memory, and write-ahead logs and in infrequent checkpoint files
 - Design is simple
 - Metadata operations are fast
 - Maintains in-memory inodes in a tree structure
 - sub-sub-bullet
- Scaling metadata size separable from scaling thruput
 - Most files are small, suffer a high metadata footprint
 - Size of memory is the bottleneck
- Goal: remove space limits while maintain high performance of in-memory access when possible

Store Metadata in LevelDB

- LevelDB: key-value library uses log-structured merge tree on-disk
 - Local procedure calls to levelDB from HDFS NN
- Store namespace and block maps in LevelDB
 - All changes are written to LevelDB
 - No need to keep WAL in NN (b/c LevelDB has one)
- Other metadata is still in memory
 - Small and constantly changing
 - E.g. datanode status, leases, system stats

Cache Replacement Policy

- Replacement on whole directories
 - Efficient write to disk
 - Reload whole directories on miss
 - Fast negative lookups for creating files
- Replacement policy: LRU
 - CLOCK to avoid excess bookkeeping overhead
 - No need to track every read for replacement policy
 - Only update last level directory
 - Visit /a/b/c updates /a/b
- A background thread monitors heap space
 - Eject directories when heap_size > threshold (e.g.90%)
 - Estimate/Monitor subtree size for later ejection
 - Move eviction out of locked critical sections

Overhead of Using LevelDB

- The effect of longer code path
 - Memory access → read from LevelDB
 - Metadata in memory + Write-ahead-log in LevelDB
- All changes are made persistent to levelDB
 - More writes than original namenode
- Group commit
 - No group commit in LevelDB
 - Batch updates to LevelDB as synchronous writes

Performance

- Single Susitna node:
 - CPU: AMD Opteron 6272, 16-core 2.1 GHz
 - SSD: Crucial M4-CT064M4SSD2, 64 GB, SATA 6.0Gb/s
- NNThroughputBenchmark from Hadoop distribution
 - No RPC cost, run within NN & call FS methods directly
 - All operations are generated based on BFS order
- Create & close 2.4M files: all fit in cache
 - Old NN and LevelDB NN peak at different # threads
 - Degradation for peak throughput is 13.5%
- Create & close 9.6M files: 1% fits in cache
 - Old NN with 8 threads and LevelDB NN with 16 threads
 - Old NN starts to slow down when heap gets almost full

- Stat on first 600K of 2.4M files
 - Workload generator threads work on different part of NS
 - LevelDB NN's performance is comparable to original NN

Conclusions and Future Work

- Summer internship at Hortonworks
 - Jira HDFS-5389 for applying to HDFS
- Future workPartial directory fetch and ejection Prefetching for better startup performance

UNIVERSITY of WASHINGTON