Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, Onur Mutlu (CMU)

THE MEMORY LATENCY PROBLEM

Commodity DRAM is optimized mainly for capacity, not latency

Our Goal: Reduce DRAM latency with low area cost

LATENCY-CAPACITY TRADEOFF

LEVERAGING THE TL-DRAM SUBSTRATE

- Fully transparent (no change to system)
- Use near-segment as hardware-managed cache
 - Far segment: Main memory
 - Near segment: Caches an accessed row
 - Memory controller manages the near segment
- Use near-segment as software-managed cache
 - OS/VMM manages the near segment
- Multi-level main memory
 - Allocate from fast vs. slow DRAM
 - Application or system software decides where a page goes

RESULTS

Intel Science & Technology

Performance & Power Consumption

Varying Near Segment Length

DRAM ARCHITECTURE

Long Bitline: Amortizes sense amplifier's overhead → Small area Long Bitline: Large bitline capacitance → High latency

TL-DRAM: ~BEST OF BOTH WORLDS

- Idea: Divide a subarray into two segments with an isolation transistor
 - Near segment: fast access, low power
 - Far segment: mostly slow access, high power

Area cost: 3% (due to isolation transistor)

LEVERAGING TL-DRAM: CACHING

Hardware-Managed Cache

 Caching: Copy the row from far segment to near segment

Inter-Segment Migration

 Copy data from source to destination across shared bitlines concurrently

SUMMARY & ONGOING WORK

- TL-DRAM: A new memory architecture that introduces latency heterogeneity by keeping technology homogeneity
 - Same chip, same technology: fast and slow portions
- Exposing TL-DRAM to system software
 - System software management algorithms
- Exploring Tiered Latency in NVM
 - Could be easier to adopt
- Fitting TL-DRAM into DRAM/NVM/Flash/Disk cooperative page management and allocation mechanisms

UNIVERSITY of WASHINGTON