Background and Problems

- DRAM cells require **periodic refresh** to prevent data loss from leakage
- **Problems:**
 1. System performance degradation

All-bank refresh (REF_{ab}): memory controllers refresh every bank within a rank, blocking the rank from servicing memory requests

2. DRAM scaling
 As DRAM density increases (more cells), refresh latency is expected to increase

Per-bank refresh (REF_{pb}): refresh one bank at a time, following a strict sequential round-robin order

Advantage: enable DRAM to serve requests in non-refreshing banks while another bank is refreshing

Our Solution

1. **Dynamic Access Refresh Parallelization (DARP):**
 - Refresh scheduling policy with two components
 1. **Out-of-order per-bank refresh:**
 - **Key observation:** DRAM has internal logic that strictly refreshes banks in a round-robin order
 - **Key idea:** refresh banks in out-of-order fashion by issuing a per-bank refresh to any idle bank
 2. **Write-refresh parallelization:**
 - **Key observations:**
 1) Write requests are buffered and drained to DRAM in a batch
 2) Write requests are not latency-critical
 - **Key idea:** select the bank with the fewest number (or none) of pending writes to refresh while DRAM is draining writes

2. **Subarray Access Refresh Parallelization (SARP):**
 - **Key observations:**
 1) A bank consists of multiple subarrays (sub-banks)
 2) Every subarray has its own local sense amplifiers (row buffer) to perform refresh operations
 3) DRAM I/O remains idle under refresh
 - **Key idea:** enable a bank to service accesses in idle subarrays in parallel with refreshes to other subarrays in a bank
 - SARP requires modifications to the DRAM microarchitecture
 - Area overhead: 0.71% based on Rambus DRAM model

Results

Methodology

- 8 OoO cores, 4GHz, 3-wide issue
- 64KB L1, 512KB private L2 cache slide/core
- Memory controller: 64-entry request queue, FR-FCFS scheduling
- DRAM: DDR3-1333, 2 channels, 2 ranks/channel, 8 banks/rank, 8 subarrays/bank
- Simulation: cycle-level x86 multi-core simulator
- Workloads: TPC, STREAM, SPEC CPU2006