Big Machine Learning: Needs and Directions
Qirong Ho, Jim Cipar, Wei Dai, Jinliang Wei, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons*,
Gregory R. Ganger, Garth Gibson, Eric P. Xing (CMU, *Intel)

BIG PICTURE
- Many ML algorithms, but grouped into families
 - Five major families (ML Pie)
 - Each family uses math and techniques
- ML researchers keep implementing from scratch
 - Effort duplicated on MPI, distributed state, etc.
 - Little code reuse between research groups
- Need system support for Big ML that:
 - Handles computation and data partitioning
 - Addresses unique aspects of ML families
 - Facilitates future systems-ML research

WHAT’S AN ML ALGORITHM?
- Most “ML algorithms” are combo of two things:
 - Mathematical/statistical model
 - Algorithmic technique to solve the model
- This ML pie is model-centric
 - Family members share mathematical properties
 - Techniques may be used in more than one family

STALENESS
- ML algorithms iterate until convergence
 - Minor errors in intermediate data induce more iterations, but don’t prevent convergence
- Each iteration reads/writes shared intermediate data
 - Locking quickly becomes a bottleneck
 - Limited network bandwidth a secondary bottleneck
- Big idea: let threads work on stale data
 - More iterations, but often much faster
 - See LazyTables poster for more info!

LOCALITY
- Intermediate data is often large and distributed
 - Computation should be near intermediate data being used
- Intermediate data usage patterns change over time
 - May shift focus within intermediate data
 - Adaptive placement required to maximize performance
 - Staleness can help with locality
 - LazyTables caches stale copies near each thread

ADAPTIVE SYNCHRONIZATION
- Synchronization among threads can help and hurt
 - Slows iteration rate and often not needed
 - But, highly correlated variables converge slowly without it
- Big idea: dynamic variable sets
 - Within a set, update are synchronized
 - Between sets, they are not
 - Adaptively formed by measuring correlation

ONGOING EXPLORATIONS
- Refining the ML pie
 - Useful for identifying systems opportunities
- Evaluating existing platforms
 - E.g., GraphLab, Spark, Piccolo
 - Each has strengths and weaknesses
 - Substantial slices of pie served by none
- Evaluating new systems support ideas
 - With real ML algorithm implementations