- Sub-bullet
 - sub-sub-bullet

Big Machine Learning: Needs and Directions

Qirong Ho, Jim Cipar, Wei Dai, Jinliang Wei, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons*, Gregory R. Ganger, Garth Gibson, Eric P. Xing (CMU, *Intel)

BIG PICTURE

- Many ML algorithms, but grouped into families
 - > Five major families (ML Pie)
 - > Each family uses math and techniques
- ML researchers keep implementing from scratch
 - Effort duplicated on MPI, distributed state, etc.
 - Little code reuse between research groups
- Need system support for Big ML that:
 - > Handles computation and data partitioning
 - > Addresses unique aspects of ML families
 - > Facilitates future systems-ML research

WHAT'S AN ML ALGORITHM?

- Most "ML algorithms" are combo of two things:
 - Mathematical/statistical model
 - > Algorithmic technique to solve the model
- This ML pie is model-centric
 - > Family members share mathematical properties
- Techniques may be used in more than one family

STALENESS

- ML algorithms iterate until convergence
 - > Minor errors in intermediate data induce more iterations, but don't prevent convergence
- Each iteration reads/writes shared intermediate data
 - > Locking quickly becomes a bottleneck
 - > Limited network bandwidth a secondary bottleneck
- Big idea: let threads work on stale data
 - > More iterations, but often much faster
- See LazyTables poster for more info!

ADAPTIVE SYNCHRONIZATION

- Synchronization among threads can help and hurt
 - > Slows iteration rate and often not needed
 - But, highly correlated variables converge slowly without it

Stale reads/writes

Big idea: dynamic variable sets

Fresh reads/writes

- > Within a set, update are synchronized
- Between sets, they are not
- Adaptively formed by measuring correlation

Carnegie Georgia Mellon Tech University

11

12

UNIVERSITY of WASHINGTON

LOCALITY

- Intermediate data is often large and distributed
 - > Computation should be near intermediate data being used
- Intermediate data usage patterns change over time
 - > May shift focus within intermediate data
 - > Adaptive placement required to maximize performance
- Staleness can help with locality
 - > LazyTables caches stale copies near each thread

Locality: Input Data, Intermediate Data, and Computation

ONGOING EXPLORATIONS

- Refining the ML pie
 - > Useful for identifying systems opportunities
- **Evaluating existing platforms**
- > E.g., GraphLab, Spark, Piccolo
- Each has strengths and weaknesses
- Substantial slices of pie served by none
- **Evaluating new systems support ideas**
- With real ML algorithm implementations