Enabling End-to-End Latency & Throughput SLOs on Shared Storage

Timothy Zhu, Alexey Tumanov, Michael A. Kozuch*, Mor Harchol-Balter, Gregory R. Ganger (Carnegie Mellon University, *Intel Labs)

PROBLEM STATEMENT

- Share storage while satisfying a mix of latency and throughput objectives
- Challenges:
 - End-to-end (network + storage) latency
 - Automatic system parameter configuration
 - Diverse workload requirements

SYSTEM DESIGN

LOCAL REQUEST SCHEDULER

- Each client app gets a FIFO queue
- Priority provides latency differentiation
- Rate-limiting avoids starvation

GLOBAL SCHEDULER

- Assigning priorities to meet end-to-end deadlines is hard
 - Client priorities may be different between queues
 - Combinatorial optimization problem

PRELIMINARY RESULTS

Interactive Bounded Latency Guaranteed Throughput

Priority reduces latency for workloads that care most

Performance Isolation

- —Behaved w/ Rate-Limiting
- —Behaved w/o Rate-Limiting
- -- Misbehaved w/ Rate-Limiting
- --Misbehaved w/o Rate-Limiting

Rate-Limiting protects behaved workloads

POTENTIAL DIRECTIONS

- Flexible user SLOs (e.g., soft/hard deadline)
 - Latency and/or throughput
- Automatic app/datastore placement decisions
- App and data migration for better placement

