Enabling End-to-End Latency & Throughput SLOs on Shared Storage
Timothy Zhu, Alexey Tumanov, Michael A. Kozuch*, Mor Harchol-Balter, Gregory R. Ganger
(Carnegie Mellon University, *Intel Labs)

PROBLEM STATEMENT
- Share storage while satisfying a mix of latency and throughput objectives
- Challenges:
 - End-to-end (network + storage) latency
 - Automatic system parameter configuration
 - Diverse workload requirements

SYSTEM DESIGN
- Application Requirements → Global Scheduler
 (e.g. Latency deadline, Throughput reservation)
- Parameters
 - Local Request Scheduler
 - Apps
 - Datastores

LOCAL REQUEST SCHEDULER
- Each client app gets a FIFO queue
- Priority provides latency differentiation
- Rate-limiting avoids starvation
- Token-bucket model

GLOBAL SCHEDULER
- Assigning priorities to meet end-to-end deadlines is hard
- Client priorities may be different between queues
- Combinatorial optimization problem

PRELIMINARY RESULTS
- Latency Differentiation
- Performance Isolation
- Priority reduces latency for workloads that care most
- Rate-Limiting protects behaved workloads

POTENTIAL DIRECTIONS
- Flexible user SLOs (e.g., soft/hard deadline)
- Latency and/or throughput
- Automatic app/datastore placement decisions
- App and data migration for better placement