LazyTable: Distributed Machine Learning with the Stale Synchronous Parallel Model

Qirong Ho, Henggang Cui, James Cipar, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Wei Dai, Jinliang Wei, Greg Ganger, Phil Gibbons*, Garth Gibson, Eric Xing (CMU, *Intel)

PARALLEL MACHINE LEARNING

- Learn model parameters from a big dataset
 - Work is partitioned among multiple threads
 - Each thread processes a partition of input data
 - > Threads iteratively update the shared parameter state based on their input data
- Parameter server
 - > Maintains shared values for worker threads
 - > Tradeoff between fresh views and synchronization
- Most ML algorithms tolerate bounded staleness
 - Common model: Bulk Synchronous Parallel
 - Barrier and data update at end of each clock
 - Worker guaranteed to see updates up to previous clock
 - New model: Stale Synchronous Parallel

WHY DOES SSP CONVERGE?

- Theorem 1: SSP approximates sequential execution
 - Error at each update is strictly bounded

 Theorem 2: For iterative-convergent ML problems, SSP guarantees algorithm convergence

Next state = previous state + noisy gradient

- Hence, ML algorithms converge under SSP
- Albeit via a noisy trajectory

STALE SYNCHRONOUS PARALLEL MODEL

- Tunable data staleness ("slack")
- Any thread can be up to slack clocks ahead of slowest thread

LAZYTABLE SYSTEM OVERVIEW

- Parameter server based on SSP
 - > A client library with a cluster of tablet servers
- Multiple layers of caches and operation logs
 - > Closer caches tend to be more stale, but faster
- Slack bound specified in each read operation
 - > Data allowed to be "slack" clocks stale
 - Cache data returned, if fresh enough

RESULTS & DIRECTIONS

- Many results found on companion poster
- Key takeaways: converge faster with SSP
 - > More staleness → more iters/sec, less effective/iter
 - Sweet spot balances the two
 - > Works well for range of ML approaches
 - Topic Modeling (LDA with Gibbs sampling)
 - Sparse Matrix Factorization (stochastic gradient) descent)
 - Shotgun (coordinate gradient descent)
- Continuing to explore iterative nature
 - > Better data assignment to tablet servers
 - > Memory/thread scheduling on multi-core machines
 - > Try for near-ideal straggler tolerance

UNIVERSITY of WASHINGTON