STRADS: A Distributed Dynamic Scheduler for Parallel Machine Learning
Jin Kyu Kim, Seunghak Lee, Eric Xing, Garth Gibson (CMU)

MOTIVATION
- Machine learning techniques are mostly defined serially
- Big Data drives ML to seek out parallel algorithms
 - Property: large # of features (dimensions)
 - Examples: Sensor array, consumer preference, Netflix

WHAT’S REGRESSION?
- Regression problem: For given input A, and observation Y, find unknown x parameter
- Sparse regression is one variation of regression that favors a small number of non-zero parameters corresponding to the most relevant features

GOAL AND IDEAS
- Our goal: provide a faster way of solving high-dimension problems in parallel
- Approach: Application-aware task scheduler specific to convex optimization solving.
- We apply our two application-aware scheduling policies to “Sparse Regression Problem” as an example

“LASSO” FOR SPARSE REGRESSION
- Very famous algorithm for feature selection
 - Tibshirani ’96 (8744 reference counts in Google scholar)
 - Select features relevant to output (Y)
 - Example: What gene affects cancer susceptibility?

EVALUATION OF PREVIOUS WORKS
- Problems with previous work
 - Uniform scheduling: wastes most of cycles updating already-converged parameters
 - Random selection: limits the parallelism because of the risk of divergence or slow down

“Impressive speedup”

STRADS: TWO SCHEDULING POLICIES
- First: Weight Distribution Based Sampling
 - Assign higher weight to more promising parameter update
 - Select parameters to update in parallel based on weighted coin (Δx from last update)
 - Result: important parameters updated more frequently
 - Improves convergence speed substantially
- Second: Run time error control
 - Estimate potential interference for pairs of parameters selected during sampling
 - If interference too strong, drop one parameter from parallel update set
 - Result: potential error is under control

Combination of two scheduling policies improves convergence rate substantially for sparse regression

We believe that scheduling idea can be applied to other optimization solvers

STRADS: IMPLEMENTATION STRATEGY

Sequential Lasso
While(converge?){
 for(i=0; i<N; i++){
 X[i] = Update(i, X);
 }
 calculate_objective_value(X);
}

Parallel Lasso (Shotgun
While(converge?){
 for(i=0; i<N/P; i++){
 Choose P parameters in random
 Update P parameters in parallel
 barrier()
 Update P entries in X
 }
 calculate_objective_value(X)
}

EXPERIMENT AND CONCLUSIONS