Low-Latency Analytics on Massive Data

Ion Stoica

(and many, many others)

UC Berkeley

What is Big Data used For?

Reports, e.g.,

» Track business processes, transactions

Diagnosis, e.g.,

- » Why is user engagement dropping?
- » Why is the system slow?
- » Is this spam?

Decisions, e.g.,

- » Personalized treatment
- » Decide what feature to add to a product
- » Decide what ad to show

What is Big Data used For?

Reports, e.g.,

» Track business processes, transactions

Diagnosis, e.g.,

» Why is user engagement dropping?

Data is as useful as the decisions it enables

Decisions, e.g.,

- » Personalized treatment
- » Decide what feature to add to a product
- » Decide what ad to show

Data Processing Goals

Low latency on historical data

» E.g., diagnosis, root cause analysis

Low latency on live data (streaming)

» E.g., real-time dashboard

Sophisticated data processing: "better" decisions

» E.g., anomaly detection, trend analysis

Data Processing Goals

Low latency on historical data

» E.g., diagnosis, root cause analysis

Goal: Low latency computations on massive datasets for both historical and live data

Sopnisticated data processing: Detter decisions

» E.g., anomaly detection, trend analysis

Today's Open Analytics Stack...

..mostly focused on large on-disk datasets

» Sophisticated processing on massive data, but slow

Key Ideas

Add RAM (and SSDs) to the mix

- » Surprising # of real-world working sets fit in memory
 - Inputs of 90% of MapReduce jobs at Facebook and Yahoo!
 can fit in cluster memory (85% at Microsoft)
- » Provide interactive queries and data streaming

Allow users to **trade** between query's (computation's)

- » Response time
- » Accuracy
- » Cost

Our Stack

Application

New applications: Cancer Genomics, Carat

Data Processing

In-memory processing & allow users to trade between resp. time and quality

Data Management

Data sharing across frameworks, new data abstractions (includes storage)

Resource Management

Share infrastructure across frameworks (i.e., multi-programing for datacenters)

Frameworks: Spark

In-memory framework for

- » low-latency computations on historical data
- » iterative computations

Spark

SCALA interface

x10 – x100 faster than Hadoop

Challenge: Need a distributed memory abstraction that is both **fault-tolerant** and **efficient**!

Possible Solutions

Replicate data in memory

- » Slow: network throughput much lower than memory throughput
- » Inefficient: use at least twice as much memory

Log the updates

» Inefficient: logs for data intensive applications typically very large → writing on the disk slow

Our Solution

Resilient Distributed Data Sets (RDD)

- » Partitioned collection of records
- » Immutable
- » Can be created only through deterministic operations from other RDDs

Handle of each RDD stores its lineage:

» Lineage: sequence of operations that created the RDD

Recovery: use lineage information to rebuild RDD

RDD Example

Two-partition RDD $A=\{A_1, A_2\}$ stored on disk

- Read and cache after applying f() → RDD B
- 2) Shuffle, and apply $g() \rightarrow RDDC$
- 3) Aggregate using $h() \rightarrow D$

RDD Example

C₁ lost due to node failure before h() is computed

RDD Example

C₁ lost due to node failure before h() is computed Reconstruct C₁, eventually, on a different node

Frameworks: Streaming

Add streaming functionality to Spark » Low-latency computations on live data

Frameworks: Shark

HIVE over Spark: Interactive SQL-like queries for data fitting into memory

Frameworks: BlinkDB

Allow users to **trade** between computation's

- » accuracy
- » time
- » cost

Why BlinkDB?

Even if all data in memory, query may take 10's sec » Just scanning 200-300GB RAM may take 10 sec

Too slow for...

- » real-time (e.g., sub-second) decisions, and...
- » ... even for interactive queries

Exact results not always necessary, e.g.,

- » Does blue background increase user engagement?
- » Has the service slowed down?

BlinkDB Interface

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco' AND 'dt=2012-9-2'

WITHIN 1 SECONDS

234.23 ± 15.32

BlinkDB Interface

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco' AND 'dt=2012-9-2'

WITHIN 2 SECONDS

 $\frac{234.23 \pm 15.32}{}$

239.46 ± 4.96

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco' AND 'dt=2012-9-2'

ERROR 0.1 CONFIDENCE 95.0%

Offline-sampling:

- » Uniform random
- » Stratified on diff.set of columns
- » Diff. granularities

Build Error-Latency
Profile (ELP): Predict
time and error of the
query running on
different samples

Online sample selection: pick best sample(s) based on **ELP**

Error-Latency Profile (ELP)

→Relative Error

Sample Size (in KB)

Error-Latency Profile (ELP)

Error-Latency Profile (ELP)

BlinkDB: Evaluation

BlinkDB: Evaluation

BlinkDB: Evaluation

BlinkDB Challenges

Which set of samples to build given a storage budget?

How do we accurately estimate the service time?

How do we accurately estimate the error?

» What about user defined functions (UDFs)?

Summary

Build full Data Analytics Stack compatible with existing open source stack

Low latency computations on massive historical and live data

Status

Several components have already been released

- » Mesos: deployed on +2,500 servers at Twitter
- » **Spark:** used by dozen companies
- » Shark: just released in October
- » Carat: ~400K downloads on AppStore

Future work: highly scalable Machine Learning algorithms

https://amplab.cs.berkeley.edu

Students Involved in Projects

Spark: Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley

Shark: Reynold Shin, Matei Zaharia, Josh Rosen

BlinkDB: Sameer Agrawal, Aurojit Panda, Henry Milner, Barzan Mozafari (PostDoc, MIT)

Thank you!