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What is Big Data used For?

Reports, e.qg.,
» Track business processes, transactions

Diagnosis, e.qg.,
» Why is user engagement dropping?
» Why is the system slow?
» |s this spam?

Decisions, e.qg.,
» Personalized treatment
» Decide what feature to add to a product
» Decide what ad to show



[ Data is as useful as the decisions it enables ]




Data Processing Goals

Low latency on historical data
» E.g., diagnosis, root cause analysis

Low latency on live data (streaming)
» E.q., real-time dashboard

Sophisticated data processing: "better” decisions
» E.g., anomaly detection, trend analysis
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Goal: Low latency computations on massive

datasets for both historical and live data )




Today’s Open Analytics Stack...

..mostly focused on large on-disk datasets
» Sophisticated processing on massive data, but slow

Application

Data Processing

Storage

Infrastructure




Key Ideas
Add RAM (and S5Ds) to the mix

» Surprising # of real-world working sets fit in memory

* Inputs of 9o% of MapReduce jobs at Facebook andYahoo!
can fitin cluster memory (85% at Microsoft)

» Provide interactive queries and data streaming

Allow users to trade between query’s
(computation’s)

» Response time

» Accuracy

» Cost




Our Stack

Q New applications: Cancer Genomics,

Application Carat

In-memory processing & allow users to
S trade between resp. time and quality

Data Processing

Data Management Data sharing across frameworks, new
data abstractions (includes storage)

Resource Management )
9 Share infrastructure across frameworks

(i.e., multi-programing for datacenters)




Frameworks: Spark

In-memory framework for

» low-latency computations on historical data

» iterative computations

HIVE

Pig

Hadoop

| MPI

Data
Processing



Spark

SCALA interface
X10 — x100 faster than Hadoop

Challenge: Need a distributed memory abstraction
that is both fault-tolerant and efficient!



Possible Solutions

Replicate data in memory
» Slow: network throughput much lower than memory
throughput
» Inefficient: use at least twice as much memory

Log the updates
» Inefficient: logs for data intensive applications
typically very large = writing on the disk slow



Our Solution

Resilient Distributed Data Sets (RDD)

» Partitioned collection of records

» Immutable

» Can be created only through deterministic operations
from other RDDs

Handle of each RDD stores its lineage:
» Lineage: sequence of operations that created the RDD

Recovery: use lineage information to rebuild RDD



RDD Example

Two-partition RDD A={A_, A_} stored on disk
1) Read and cache after applying f() > RDD B
2) Shuffle, and apply g() 2 RDD C
3) Aggregate usingh() 2 D

RDD A
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RDD Example

C, lost due to node failure before h() is computed
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RDD Example

C, lost due to node failure before h() is computed

Reconstruct C, eventually, on a different node
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Frameworks: Streaming

Add streaming functionality to Spark
» Low-latency computations on live data

HIVE || Pig

Spark

Hadoop

| MPI

Data
Processing



Frameworks:

Shark

HIVE over Spark: Interactive SQL-like queries
for data fitting into memory

StreamingJ

Spark

HIVE || Pig

Hadoop

| MPI

Data
Processing



Frameworks: BlinkDB

Allow users to trade between computation’s
» accuracy
» time
» cost

BlinkDB HIVE Plg .
Streaming_| Shark I MPH B/ Cessing
Spark Hadoop




Why BlinkDB?

Even if all data in memory, query may take 10's sec
» Just scanning 200-300GB RAM may take 10 sec

Too slow for...

» real-time (e.g., sub-second) decisions, and...
» ... even for interactive queries

Exact results not always necessary, e.q.,
» Does blue background increase user engagement?
» Has the service slowed down?



BlinkDB Interface

SELECT avg(sessionTime)

FROM Table
WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
WITHIN 1 SECONDS > 234.23 £15.32




BlinkDB Interface

SELECT avg(sessionTime)

FROM Table
WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
WITHIN 2 SECONDS > 23423+1532

239.46 £ 4.96

SELECT avg(sessionTime)

FROM Table

WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
ERROR 0.1 CONFIDENCE g95.0%



System Architecture

< Offline-sampling:
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System Architecture

SELECT Query Plan
foo (*) >
FROM .
TABLE; Sample Selection
HiveQL/SQL , A ‘
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System Architecture

Data

SELECT Query Plan
foo (%) R
FROM .
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System Architecture

SELECT Query Plan
foo (*) >
FROM .
TABLE: Sample Selection [k
HiveQL/SQL , A ‘
Query
9
-
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=
TABLE .
\ F -C
Original c
q0)
Vg

Data

pOn-Disk  In-Memory <
Samples ~ Samples &

Error Bars &

Confidence Intervals

Shark

!

Result
182.23 £ 5.56

(95% confidence)

Parallel query
execution



Error-Latency Profile (ELP)
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Error-Latency Profile (ELP)

Relative Error
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Error-Latency Profile (ELP)
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Query Response Time

BlinkDB: Evaluation
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Query Response Time

BlinkDB: Evaluation
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BlinkDB: Evaluation
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BlinkDB Challenges

Which set of samples to build given a storage
budget?

How do we accurately estimate the service time?

How do we accurately estimate the error?
» What about user defined functions (UDFs)?



Summary

Build full Data Analytics Stack compatible with
existing open source stack

Low latency computations on massive

historical and live data

BlinkDB HIVE || Pig

Streaming

MPI

Hadoop
Cheetah HDFS

Mesos

Data
Processing

Data
Managemet

Resource
Management



Status

Several components have already been released
» Mesos: deployed on +2,500 servers at Twitter
» Spark: used by dozen companies
» Shark: just released in October kY
» Carat: ~400K downloads on AppStore gg v

Future work: highly scalable Machine Learning
algorithms

https://amplab.cs.berkeley.edu




Students Involved in Projects

Spark: Matei Zaharia, Mosharaf Chowdhury,
Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley

Shark: Reynold Shin, Matei Zaharia, Josh Rosen

BlinkDB: Sameer Agrawal, Aurojit Panda, Henry
Milner, Barzan Mozafari (PostDoc, MIT)



Thank you!



