Low-Latency Analytics on
Massive Data

i (]
i s ! b

i The data deluge

Competing on

Analytics

lon Stoica

I PETABYTEERA

(and many, many others)
UC Berkeley Iab

Intel Science & Technology
Center for Cloud Computing

What is Big Data used For?

Reports, e.qg.,
» Track business processes, transactions

Diagnosis, e.qg.,
» Why is user engagement dropping?
» Why is the system slow?
» |s this spam?

Decisions, e.qg.,
» Personalized treatment
» Decide what feature to add to a product
» Decide what ad to show

[Data is as useful as the decisions it enables]

Data Processing Goals

Low latency on historical data
» E.g., diagnosis, root cause analysis

Low latency on live data (streaming)
» E.q., real-time dashboard

Sophisticated data processing: "better” decisions
» E.g., anomaly detection, trend analysis

-

_

~N

Goal: Low latency computations on massive

datasets for both historical and live data)

Today’s Open Analytics Stack...

..mostly focused on large on-disk datasets
» Sophisticated processing on massive data, but slow

Application

Data Processing

Storage

Infrastructure

Key Ideas
Add RAM (and S5Ds) to the mix

» Surprising # of real-world working sets fit in memory

* Inputs of 9o% of MapReduce jobs at Facebook andYahoo!
can fitin cluster memory (85% at Microsoft)

» Provide interactive queries and data streaming

Allow users to trade between query’s
(computation’s)

» Response time

» Accuracy

» Cost

Our Stack

Q New applications: Cancer Genomics,

Application Carat

In-memory processing & allow users to
S trade between resp. time and quality

Data Processing

Data Management Data sharing across frameworks, new
data abstractions (includes storage)

Resource Management)
9 Share infrastructure across frameworks

(i.e., multi-programing for datacenters)

Frameworks: Spark

In-memory framework for

» low-latency computations on historical data

» iterative computations

HIVE

Pig

Hadoop

| MPI

Data
Processing

Spark

SCALA interface
X10 — x100 faster than Hadoop

Challenge: Need a distributed memory abstraction
that is both fault-tolerant and efficient!

Possible Solutions

Replicate data in memory
» Slow: network throughput much lower than memory
throughput
» Inefficient: use at least twice as much memory

Log the updates
» Inefficient: logs for data intensive applications
typically very large = writing on the disk slow

Our Solution

Resilient Distributed Data Sets (RDD)

» Partitioned collection of records

» Immutable

» Can be created only through deterministic operations
from other RDDs

Handle of each RDD stores its lineage:
» Lineage: sequence of operations that created the RDD

Recovery: use lineage information to rebuild RDD

RDD Example

Two-partition RDD A={A_, A_} stored on disk
1) Read and cache after applying f() > RDD B
2) Shuffle, and apply g() 2 RDD C
3) Aggregate usingh() 2 D

RDD A
él !N> \ é!l—\ \
o
I
>
=
N
I
o
oy
O
I
M
=

RDD Example

C, lost due to node failure before h() is computed

1
|
/J

__RDDA __

@I ! N> \ Q! |—\j> \

RDD Example

C, lost due to node failure before h() is computed

Reconstruct C, eventually, on a different node

1
|
/J

__RDDA __

Ql ! N> \ é! |—\j> \

Frameworks: Streaming

Add streaming functionality to Spark
» Low-latency computations on live data

HIVE || Pig

Spark

Hadoop

| MPI

Data
Processing

Frameworks:

Shark

HIVE over Spark: Interactive SQL-like queries
for data fitting into memory

StreamingJ

Spark

HIVE || Pig

Hadoop

| MPI

Data
Processing

Frameworks: BlinkDB

Allow users to trade between computation’s
» accuracy
» time
» cost

BlinkDB HIVE Plg .
Streaming_| Shark I MPH B/ Cessing
Spark Hadoop

Why BlinkDB?

Even if all data in memory, query may take 10's sec
» Just scanning 200-300GB RAM may take 10 sec

Too slow for...

» real-time (e.g., sub-second) decisions, and...
» ... even for interactive queries

Exact results not always necessary, e.q.,
» Does blue background increase user engagement?
» Has the service slowed down?

BlinkDB Interface

SELECT avg(sessionTime)

FROM Table
WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
WITHIN 1 SECONDS > 234.23 £15.32

BlinkDB Interface

SELECT avg(sessionTime)

FROM Table
WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
WITHIN 2 SECONDS > 23423+1532

239.46 £ 4.96

SELECT avg(sessionTime)

FROM Table

WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
ERROR 0.1 CONFIDENCE g95.0%

System Architecture

< Offline-sampling:

D []

3 » Uniform random

= i .
TABLE o I L » Stratified on diff.

‘ %_ set of columns
Original = » Diff. granularities
Data g

In-Memory
Samples &

System Architecture

SELECT Query Plan
foo (*) >
FROM .
TABLE; Sample Selection
HiveQL/SQL , A ‘
Query
0 Build Error-Latency
E Profile (ELP): Predict
= time and error of the
TABLE o I -~ []| aqueryrunningon
] different samples
Original =
Data g

BOn-Disk In-Memory
Samples ~ Samples

System Architecture

Data

SELECT Query Plan
foo (%) R
FROM .
TABLE; , Sample Selection
HiveQL/SQL , A ‘
Query
O Online sample
E selection: pick best
‘23 sample(s) based on
TABLE g I L ELP
Original g'
©
n

BOn-Disk In-Memory &=
P Samples Samples =

System Architecture

SELECT Query Plan
foo (*) >
FROM .
TABLE: Sample Selection [k
HiveQL/SQL , A ‘
Query
9
-
@)
=
TABLE .
\ F -C
Original c
q0)
Vg

Data

pOn-Disk In-Memory <
Samples ~ Samples &

Error Bars &

Confidence Intervals

Shark

!

Result
182.23 £ 5.56

(95% confidence)

Parallel query
execution

Error-Latency Profile (ELP)

Relative Error

0.5
0.4

0.3
0.2

0.1

o

(g

<-Relative Error

¢

(o0]

Error Decreases

| %

G HRITXREIRES
W N W1N O O O
" N F

Sample Size (in KB)

8192

16384

32768

65536

Error-Latency Profile (ELP)

Relative Error

<-Relative Error < Execution Time

0.5

Error Decreases
0.4 | >
O. — aavFa a -. -

3 | %
0.2 § -
0-1 N - : » : s -

O T T T T T T 9 T - T P

TSNSV DBINTFD O
H N 10D O 0 6
A & & ©

Sample Size (in KB)

O r N W &~ U

Service Time (sec)

Error-Latency Profile (ELP)

Relative Error

0.5
0.4

0.3
0.2

0.1

<-Relative Error <+ Execution Time

Error Decreases

N

F

ERROR 0.1: —)

* sample size: 64 €3as€3
e sevice time: 0.8 sec

1 SECOND:
* sample size: 2048
* rel. error: 0.01

O
(2]
o
¢

Sample Size (in KB)

Service Time (sec)

Query Response Time

BlinkDB: Evaluation

(seconds)

100000

10000

1000

100

=
o

=

o e, s

I'|'_I"'I_I'I'I'I11]'_I"I_I'I'I1TI|"_I"I_I'I'II'I'I'|"—I"'I'I'

|’_'I"I-I'I'|'I'I

Hive I
Shark IaIadig

2.5TB 7.5TB
Input Data Size (TB)

Query Response Time

BlinkDB: Evaluation

100000 g T TP
c Hive I

Shark IaIadig
10000

1000

100

(seconds)
r|‘_I"ﬂ'l'l'l'rll‘_l"l'lﬂmr'ﬂ"l‘l‘lll‘lT'"ﬂ"lT

=
o

=
[—1'1-rrm

— - G © G © © == © ©-am—-

2.5TB 7.5TB
Input Data Size (TB)

BlinkDB: Evaluation

0000 s e

F
r

Q 10000 -E.
£ :
S :r
U — .

Q u 1000 o
O C e
ol o) |:
0 o 3

o v 100 E_
Z’ P
v 3
o 1

10 E._
;

1

2.5TB 7 5TB
Input Data Size (TB)

BlinkDB Challenges

Which set of samples to build given a storage
budget?

How do we accurately estimate the service time?

How do we accurately estimate the error?
» What about user defined functions (UDFs)?

Summary

Build full Data Analytics Stack compatible with
existing open source stack

Low latency computations on massive

historical and live data

BlinkDB HIVE || Pig

Streaming

MPI

Hadoop
Cheetah HDFS

Mesos

Data
Processing

Data
Managemet

Resource
Management

Status

Several components have already been released
» Mesos: deployed on +2,500 servers at Twitter
» Spark: used by dozen companies
» Shark: just released in October kY
» Carat: ~400K downloads on AppStore gg v

Future work: highly scalable Machine Learning
algorithms

https://amplab.cs.berkeley.edu

Students Involved in Projects

Spark: Matei Zaharia, Mosharaf Chowdhury,
Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley

Shark: Reynold Shin, Matei Zaharia, Josh Rosen

BlinkDB: Sameer Agrawal, Aurojit Panda, Henry
Milner, Barzan Mozafari (PostDoc, MIT)

Thank you!

