Beyond Offload: Cloudlets for Large-Scale Video Upload [work in progress]

Pieter Simoens, Ph.D., Ghent University - CMU Yu Xiao, Ph.D., Aalto University – CMU Kiryong Ha, CMU Zhuo Chen, CMU Babu Pillai, Intel Research Lab Mahadev Satyanarayanan, CMU

http://www.istc-cc.cmu.edu/

Intel Science & Technology Center for Cloud Computing

Today's use of tomorrow's Google Glass

innovative user interface

Effortless capture

Huge number of uploads to be expected

Diane Furstenberg, New York Fashion Week, Sept. 2012

Your video is/can be of value to others

© CNN

What Normal People See (Cute Girl) What Surfers See (What a Tube!)

© Swellphone

Design of a scalable system for capturing, storing and content-based searching of crowd-sourced video segments

Research questions

How to make the system scalable?

Why would I share my personal video?

Challenge 1: massive upload bandwidth

480p (SD): 1.25 Mbps per stream \rightarrow 6.8 Tbps (SD) 1080p (HD): 3.75 Mbps per stream \rightarrow 20.6 Tbps (HD)

Challenge 1: massive upload bandwidth

750 Gbps (SD) 2550 Gbps (HD)

Verizon Press Release Dec 2011

Challenge 2: Efforts of and Incentives for sharing

The value of crowd-sourcing grows with the volume and diversity of entries in the video catalogue

People capture personal highlights and manually select scenes to share

incentive to capture

make catalogue more **diverse** with daily and common situations

incentive to share

make scene selection as **easy** as the capture process

Challenge 2a: Incentive to capture

Make daily, common scenes financially attractive

Many parties might be willing to pay for access to the catalogue

- videos reflect personal taste
 - advertisers, tourist bureaus ...
- hindsight view on time and place
 - insurance companies

producers

Challenge 2b: Incentive to share

Trusted entity needed to handle original video Privacy guarantee must be effortless for the user

User trade-off: personal and context-sensitive

Denaturing: removing private scenes from captured video

monetizable content 3,795,979

exposed content

Cloudlet-based architecture

Upload and denaturing

Denaturing

Indexing

© Semantic Texton Forests for Image Categorization and Segmentation, J. Shotten et al., IEEE Conf on Computer Vision and Pattern Recognition, 2008

Search

Results on wireless throughput

Individual throughput limited by mobile hardware and software stack Cumulative throughput limited by channel collisions

Computer vision algorithms are CPU bound Resolution balances throughput and accuracy

Indexing and search

Resolution has less to no impact on accuracy

Conclusions

GigaSight is framework for content-based search on crowd-sourced, denatured videos.

Key architectural design choices

- effortless capture AND privacy preservation to stimulate sharing
- distributed at the edge
 - personal VM for privacy
 - bandwidth

Scalability

- frame rate is key parameter
- ad-hoc denaturing
- CPU and bandwidth bounded
- computer vision algorithms still need a lot of improvement

Thank you for your attention

psimoens@cs.cmu.edu yuxiao@cs.cmu.edu padmanabhan.s.pillai@intel.com krha@cs.cmu.edu zhuoc@cs.cmu.edu satya@cs.cmu.edu

Back Up

Contributors

- Pieter Simoens, Ph.D., Ghent University CMU
- Yu Xiao, Ph.D., Aalto University CMU
- Kiryong Ha, Carnegie Mellon
- Zhuo Chen, Carnegie Mellon
- Babu Pillai, Intel Labs Research
- Satya, prof., Carnegie Mellon