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Warning 
 This is an asymmetric talk 

 
 Component 1: A case for asymmetry everywhere 

 
 Component 2: A (relatively) deep dive into a specific 

mechanism to exploit asymmetry in cores 
 

 Asymmetry = heterogeneity 
 A way to enable specialization/customization 
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The Cloud Setting 
 Hardware resources are shared among many threads/apps 

in a many-core based cloud computing system 
 Cores, caches, interconnects, memory, disks, power, lifetime, 

… 
 

 Management of these resources is a very difficult task 
 When optimizing parallel/multiprogrammed workloads 
 Threads interact unpredictably/unfairly in shared resources 

 
 Power/energy is arguably the most valuable shared resource 

 Main limiter to efficiency and performance 
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Shield the Programmer from Shared Resources 

 Writing even sequential software is hard enough 
 Optimizing code for a complex shared-resource parallel system 

will be a nightmare for most programmers 
 

 Programmer should not worry about                   
(hardware) resource management 
 What should be executed where with what resources 
 

 Future cloud computer architectures should be designed to 
 Minimize programmer effort to optimize (parallel) programs 
 Maximize runtime system’s effectiveness in automatic     

shared resource management 
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Shared Resource Management: Goals 

 Future many-core systems should manage power and 
performance automatically across threads/applications 
 

 Minimize energy/power consumption 
 While satisfying performance/SLA requirements 

 Provide predictability and Quality of Service 
 Minimize programmer effort 

 In creating optimized parallel programs 
 

 Asymmetry and configurability in system resources essential 
to achieve these goals  
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Asymmetry Enables Customization 

 
 
 
 
 
 
 

 Symmetric: One size fits all 
 Energy and performance suboptimal for different phase behaviors 

 Asymmetric: Enables tradeoffs and customization 
 Processing requirements vary across applications and phases 
 Execute code on best-fit resources (minimal energy, adequate perf.) 
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Thought Experiment: Asymmetry Everywhere 
 Design each hardware resource with asymmetric, (re-

)configurable, partitionable components 
 Different power/performance/reliability characteristics 
 To fit different computation/access/communication patterns 
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Thought Experiment: Asymmetry Everywhere 
 

 Design the runtime system (HW & SW) to automatically choose 
the best-fit components for each workload/phase 
 Satisfy performance/SLA with minimal energy 
 Dynamically stitch together the “best-fit” chip for each phase  
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Thought Experiment: Asymmetry Everywhere 
 

 Morph software components to match asymmetric HW 
components  
 Multiple versions for different resource characteristics 
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Many Research and Design Questions 
 How to design asymmetric components? 

 Fixed, partitionable, reconfigurable components? 
 What types of asymmetry? Access patterns, technologies? 

 
 What monitoring to perform cooperatively in HW/SW? 

 Automatically discover phase/task requirements 
 

 How to design feedback/control loop between components and 
runtime system software? 
 

 How to design the runtime to automatically manage resources? 
 Track task behavior, pick “best-fit” components for the entire workload 
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Talk Outline 
 Problem and Motivation 
 How Do We Get There: Examples 
 Bottleneck Identification and Scheduling (BIS) 
 Handling Resource Contention Bottlenecks 
 Conclusions 
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Exploiting Asymmetry: Simple Examples 
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 Execute critical/serial sections on high-power, high-performance 

cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12] 

 Programmer can write less optimized, but more likely correct programs  



Exploiting Asymmetry: Simple Examples 
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 Execute streaming “memory phases” on streaming-optimized 

cores and memory hierarchies 
 More efficient and higher performance than general purpose hierarchy 



Exploiting Asymmetry: Simple Examples 

14 

 
 Partition memory controller and on-chip network bandwidth 

asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks 
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011] 

 Higher performance and energy-efficiency than symmetric/free-for-all 



Exploiting Asymmetry: Simple Examples 
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 Have multiple different memory scheduling policies; apply them 

to different sets of threads based on thread behavior [Kim+ MICRO 
2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012] 

 Higher performance and fairness than a homogeneous policy 



Exploiting Asymmetry: Simple Examples 
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 Build main memory with different technologies with different 

characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE 
CAL’12] 

 Map pages/applications to the best-fit memory resource 
 Higher performance and energy-efficiency than single-level memory 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 
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 Problem and Motivation 
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 Bottleneck Identification and Scheduling (BIS) 
 Handling Resource Contention Bottlenecks 
 Conclusions 
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The Problem: Serialized Code Sections 
 Many parallel programs cannot be parallelized completely 

 
 Causes of serialized code sections 

 Sequential portions (Amdahl’s “serial part”) 
 Critical sections 
 Barriers 
 Limiter stages in pipelined programs 
 

 Serialized code sections 
 Reduce performance 
 Limit scalability 
 Waste energy 
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Example from MySQL 
 

19 

Open database tables 

Perform the operations 
…. 

Critical 
Section 

Parallel 

Access Open Tables Cache 

0 

1 

2 

3 

4 

5 

6 

7 

8 

0 8 16 24 32 
0 

1 

2 

3 

4 

5 

6 

7 

8 

0 8 16 24 32 

Chip Area (cores) 

Sp
ee

du
p 

Today 

Asymmetric 



BIS Summary 
 Problem: Performance and scalability of multithreaded applications  

are limited by serializing synchronization bottlenecks 
 different types: critical sections, barriers, slow pipeline stages 
 importance (criticality) of a bottleneck can change over time 
 

 Our Goal: Dynamically identify the most important bottlenecks and  
accelerate them 
 How to identify the most critical bottlenecks 
 How to efficiently accelerate them 

 

 Solution: Bottleneck Identification and Scheduling (BIS) 
 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and 

implement waiting for bottlenecks with a special instruction (BottleneckWait) 
 Hardware: identify bottlenecks that cause the most thread waiting and 

accelerate those bottlenecks on large cores of an asymmetric multi-core system 
 

 Improves multithreaded application performance and scalability, 
outperforms previous work, and performance improves with more cores 
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Bottlenecks in Multithreaded Applications 
Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

 Amdahl’s serial portions 
 Only one thread exists  on the critical path 

 

 Critical sections 
 Ensure mutual exclusion  likely to be on the critical path if contended 

 

 Barriers 
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path 
 

 Pipeline stages 
 Different stages of a loop iteration may execute on different threads,  

slowest stage makes other stages wait  on the critical path 
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Observation: Limiting Bottlenecks Change Over Time 

A=full linked list; B=empty linked list 
repeat 
 Lock A 
  Traverse list A 
  Remove X from A 
 Unlock A 
 Compute on X 
 Lock B 
  Traverse list B 
  Insert X into B 
 Unlock B 
until A is empty 
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Lock A is limiter 
Lock B is limiter 

32 threads 



Limiting Bottlenecks Do Change on Real Applications 
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MySQL running Sysbench queries, 16 threads 



Previous Work on Bottleneck Acceleration 
 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]  

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07] 
 

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09, Top Picks’10] 
 

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11] 

 
 

No previous work  
  can accelerate all types of bottlenecks or  
 adapts to fine-grain changes in the importance of bottlenecks 

 
 
 
 

Our goal:  
 general mechanism to identify and accelerate performance-limiting 

bottlenecks of any type  
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Bottleneck Identification and Scheduling (BIS) 

 Key insight: 
 Thread waiting reduces parallelism and  

is likely to reduce performance 
 Code causing the most thread waiting                             
 likely critical path 
 
 
 

 Key idea: 
 Dynamically identify bottlenecks that cause  

the most thread waiting 
 Accelerate them (using powerful cores in an ACMP) 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2. Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



   while cannot acquire lock 
    Wait loop for watch_addr 
   acquire lock 
   … 
   release lock 
 

Critical Sections: Code Modifications 

   … 
   BottleneckCall bid, targetPC 
   … 
targetPC:  while cannot acquire lock 
    Wait loop for watch_addr 
   acquire lock 
   … 
   release lock 
   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 
 
 
 
 
 
   … Used to keep track of 

waiting cycles 
Used to enable 

acceleration 
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Barriers: Code Modifications 
   … 
   BottleneckCall bid, targetPC 
   enter barrier 
   while not all threads in barrier 
    BottleneckWait bid, watch_addr 
   exit barrier 
   … 
targetPC:  code running for the barrier 
   … 
   BottleneckReturn bid 
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Pipeline Stages: Code Modifications 

   BottleneckCall bid, targetPC 
   … 
targetPC: while not done 
    while empty queue 
     BottleneckWait prev_bid 
    dequeue work 
    do the work … 
    while full queue 
     BottleneckWait next_bid 
    enqueue next work 
   BottleneckReturn bid 
 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2. Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 

30 

Bottleneck Identification and Scheduling (BIS) 



BIS: Hardware Overview 

 Performance-limiting bottleneck identification and 
acceleration are independent tasks 

 Acceleration can be accomplished in multiple ways 
 Increasing core frequency/voltage 
 Prioritization in shared resources [Ebrahimi+, MICRO’11] 

 Migration to faster cores in an Asymmetric CMP 
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1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2. Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Determining Thread Waiting Cycles for Each Bottleneck 
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… 

BottleneckWait x4500 
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BottleneckWait x4500 

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2. Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 
Table (BT) 

… 

Scheduling Buffer (SB) 
bid=x4700, pc, sp, core1 

Acceleration 
Index Table (AIT) 

BottleneckCall x4600 
Execute locally 

BottleneckCall x4700 

bid=x4700 , large core 0 

Execute remotely 

AIT 

bid=x4600, twc=100 

bid=x4700, twc=10000 

BottleneckReturn x4700 

bid=x4700 , large core 0 

bid=x4700, pc, sp, core1 

  twc < Threshold 

  twc > Threshold 

Execute locally Execute remotely 



BIS Mechanisms 
 Basic mechanisms for BIS: 

 Determining Thread Waiting Cycles   
 Accelerating Bottlenecks   

 
 Mechanisms to improve performance and generality of BIS: 

 Dealing with false serialization 
 Preemptive acceleration 
 Support for multiple large cores 
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Hardware Cost 
 Main structures: 

 

 Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement 

 

 Scheduling Buffers (SB): one table per large core,  
as many entries as small cores 
 

 Acceleration Index Tables (AIT): one 32-entry table 
per small core 
 
 
 
 

 Off the critical path 
 

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB 
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BIS Performance Trade-offs 
 Faster bottleneck execution vs. fewer parallel threads 

 Acceleration offsets loss of parallel throughput with large core counts 
 
 
 

 Better shared data locality vs. worse private data locality 
 Shared data stays on large core (good) 
 Private data migrates to large core (bad, but latency hidden with Data 

Marshaling [Suleman+, ISCA’10]) 
 
 
 

 Benefit of acceleration vs. migration latency 
 Migration latency usually hidden by waiting (good) 
 Unless bottleneck not contended (bad, but likely not on critical path) 
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Evaluation Methodology 

 Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications 
 Data mining kernels, scientific, database, web, networking, specjbb 
 

 Cycle-level multi-core x86 simulator 
 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT 
 1 large core is area-equivalent to 4 small cores 
 

 Details: 
 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 
 Small core: 4GHz, in-order, 2-wide, 5-stage 
 Private 32KB L1, private 256KB L2, shared 8MB L3 
 On-chip interconnect: Bi-directional ring, 2-cycle hop latency 
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BIS Comparison Points (Area-Equivalent) 
 SCMP (Symmetric CMP) 

 All small cores 
 
 

 ACMP (Asymmetric CMP) 
 Accelerates only Amdahl’s serial portions 
 Our baseline 

 

 ACS (Accelerated Critical Sections) 
 Accelerates only critical sections and Amdahl’s serial portions 
 Applicable to multithreaded workloads  

(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft) 
 

 FDP (Feedback-Directed Pipelining) 
 Accelerates only slowest pipeline stages 
 Applicable to pipeline-parallel workloads (rank, pagemine) 
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BIS Performance Improvement 

41 

Optimal number of threads, 28 small cores, 1 large core 

 BIS outperforms ACS/FDP by 15% and ACMP by 32% 
 BIS improves scalability on 4 of the benchmarks 

 

barriers, which ACS  
cannot accelerate 

limiting bottlenecks change over time 
ACS FDP 



Why Does BIS Work? 

42 

 Coverage: fraction of program critical path that is actually identified as bottlenecks 
 39% (ACS/FDP) to 59% (BIS) 

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks 
 72% (ACS/FDP) to 73.5% (BIS) 
 

Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



BIS Scaling Results 
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Performance increases with: 
 
1) More small cores 

 Contention due to bottlenecks 
increases 

 Loss of parallel throughput due 
to large core reduces 

 
 

2) More large cores 
 Can accelerate  

independent bottlenecks 
 Without reducing parallel 

throughput (enough cores) 

2.4% 
6.2% 

15% 19% 



BIS Summary 
 Serializing bottlenecks of different types limit performance of 

multithreaded applications: Importance changes over time 
 

 BIS is a hardware/software cooperative solution:  
 Dynamically identifies bottlenecks that cause the most thread waiting 

and accelerates them on large cores of an ACMP 
 Applicable to critical sections, barriers, pipeline stages 
 

 BIS improves application performance and scalability: 
 Performance benefits increase with more cores 
 

 Provides comprehensive fine-grained bottleneck acceleration 
with no programmer effort 
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Thread Serialization 
 Three fundamental causes 
 
 1. Synchronization 
  
 2. Load imbalance 
 
 3. Resource contention 
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Memory Contention as a Bottleneck 
 Problem: 

 Contended memory regions cause serialization of threads 
 Threads accessing such regions can form the critical path 
 Data-intensive workloads (MapReduce, GraphLab, Graph500) 

can be sped up by 1.5 to 4X by ideally removing contention 
 

 Idea:  
 Identify contended regions dynamically  
 Prioritize caching the data from threads which are slowed 

down the most by such regions in faster DRAM/eDRAM 
 

 Benefits: 
 Reduces contention, serialization, critical path 
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Evaluation 
 Workloads: MapReduce, GraphLab, Graph500 

 
 Cycle-level x86 platform simulator 

 CPU: 8 out-of-order cores, 32KB private L1, 512KB shared L2 
 Hybrid Memory: DDR3 1066 MT/s, 32MB DRAM, 8GB PCM 
 

 Mechanisms 
 Baseline: DRAM as a conventional cache to PCM 
 CacheMiss: Prioritize caching data from threads with highest 

cache miss latency 
 Region:  Cache data from most contended memory regions 
 ACTS: Prioritize caching data from threads most slowed down 

due to memory region contention 
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Caching Results 
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Summary 
 Cloud applications and phases have varying requirements 
 Cloud computers evaluated on multiple metrics/constraints: energy, 

performance, reliability, fairness, …  
 

 One-size-fits-all design cannot satisfy all requirements and metrics: 
cannot get the best of all worlds 
 

 Asymmetry in design enables tradeoffs: can approximate the best of 
all worlds 
 Asymmetry in core types  BIS  Good parallel performance + Good 

serialized performance 
 Asymmetry in main memory  Critical Group Caching  Good non-

contended performance + Good contended performance 
 

 Simple asymmetric designs can be effective and low-cost 
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Asymmetric Main Memory 



Heterogeneous Memory Systems 

 
 
 
 
 
 
 
 
 
 
 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” 
IEEE Comp. Arch. Letters, 2012. 

 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 
 PCM is main memory; DRAM caches memory rows/blocks 

 Benefits: Reduced latency on DRAM cache hit; write filtering 
 Memory controller hardware manages the DRAM cache 

 Benefit: Eliminates system software overhead 
 

 Three issues: 
 What data should be placed in DRAM versus kept in PCM? 
 What is the granularity of data movement? 
 How to design a low-cost hardware-managed DRAM cache? 

 
 Two idea directions: 

 Locality-aware data placement [Yoon+ , ICCD 2012] 

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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DRAM vs. PCM: An Observation 
 Row buffers are the same in DRAM and PCM 
 Row buffer hit latency same in DRAM and PCM 
 Row buffer miss latency small in DRAM, large in PCM 

 
 
 
 
 

 
 
 
 Accessing the row buffer in PCM is fast 
 What incurs high latency is the PCM array access  avoid this 
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Row-Locality-Aware Data Placement 
 Idea: Cache in DRAM only those rows that 

 Frequently cause row buffer conflicts  because row-conflict latency is 
smaller in DRAM 

 Are reused many times  to reduce cache pollution and bandwidth 
waste 

 

 Simplified rule of thumb: 
 Streaming accesses: Better to place in PCM  
 Other accesses (with some reuse): Better to place in DRAM 

 

 Bridges half of the performance gap between all-DRAM and all-PCM 
memory on memory-intensive workloads 
 

 Yoon et al."Row Buffer Locality Aware Caching Policies for Hybrid 
Memories,”     ICCD 2012. 
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The Problem with Large DRAM Caches 
 A large DRAM cache requires a large metadata (tag + 

block-based information) store 
 How do we design an efficient DRAM cache? 
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DRAM PCM 

CPU 

(small, fast cache) (high capacity) 

Mem 
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Mem 
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LOAD X 
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Idea 1: Tags in Memory 
 Store tags in the same row as data in DRAM 

 Store metadata in same row as their data 
 Data and metadata can be accessed together 

 
 
 
 
 
 

 Benefit: No on-chip tag storage overhead 
 Downsides:  

 Cache hit determined only after a DRAM access 
 Cache hit requires two DRAM accesses 
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Idea 2: Cache Tags in SRAM 
 Recall Idea 1: Store all metadata in DRAM  

 To reduce metadata storage overhead 
 

 Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata 
 Cache only a small amount to keep SRAM size small 
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Idea 3: Dynamic Data Transfer Granularity 
 Some applications benefit from caching more data 

 They have good spatial locality 
 Others do not 

 Large granularity wastes bandwidth and reduces cache 
utilization 

 
 Idea 3: Simple dynamic caching granularity policy 

 Cost-benefit analysis to determine best DRAM cache block size 
 Group main memory into sets of rows 
 Some row sets follow a fixed caching granularity 
 The rest of main memory follows the best granularity 

 Cost–benefit analysis:  access latency versus number of cachings 
 Performed every quantum 
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Methodology 
 System:  8 out-of-order cores at 4 GHz 

 
 Memory: 512 MB direct-mapped DRAM, 8 GB PCM 

 128B caching granularity 
 DRAM row hit (miss): 200 cycles (400 cycles) 
 PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles) 

 
 Evaluated metadata storage techniques 

 All SRAM system (8MB of SRAM) 
 Region metadata storage 
 TIM metadata storage (same row as data) 
 TIMBER, 64-entry direct-mapped (8KB of SRAM) 
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TIMBER Performance 

-6% 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
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TIMBER Energy Efficiency 
18% 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 



Asymmetric Memory Controllers 



Motivation 
• Memory is a shared resource 

 
 

 

• Threads’ requests contend for memory 
– Degradation in single thread performance 
– Can even lead to starvation 

 

• How to schedule memory requests to increase 
both system throughput and fairness? 
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Take turns accessing memory 

Why do Previous Algorithms Fail? 
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Fairness biased approach 

thread C 
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less memory  
intensive 

higher 
priority 

Prioritize less memory-intensive threads 

Throughput biased approach 

Good for throughput 

starvation  unfairness 

thread C thread B thread A 

Does not starve 

not prioritized   
reduced throughput 

Single policy for all threads is insufficient 



Insight: Achieving Best of Both Worlds 
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Overview: Thread Cluster Memory Scheduling 
1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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Prioritize threads according to MPKI 
 
 
 
 
 
 
 

• Increases system throughput 
– Least intensive thread has the greatest potential 

for making progress in the processor 
 

Non-Intensive Cluster 
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Periodically shuffle the priority of threads 
 

 
 
 
 
 
 

• Is treating all threads equally good enough? 
• BUT: Equal turns ≠ Same slowdown 

Intensive Cluster 
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Results: Fairness vs. Throughput 
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Results: Fairness-Throughput Tradeoff 
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TCM Summary 
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• No previous memory scheduling algorithm provides 
both high system throughput and fairness 
– Problem: They use a single policy for all threads 

 

• TCM is a heterogeneous scheduling policy 
1. Prioritize non-intensive cluster  throughput 
2. Shuffle priorities in intensive cluster  fairness 
3. Shuffling should favor nice threads  fairness 

 
• Heterogeneity in memory scheduling provides the  

best system throughput and fairness 
 



More Details on TCM 
• Kim et al., “Thread Cluster Memory Scheduling: 

Exploiting Differences in Memory Access Behavior,” 
MICRO 2010, Top Picks 2011. 
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Memory Control in CPU-GPU Systems 
 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 
 

 Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 
 SMS is significantly simpler and more scalable 
 SMS provides higher performance and fairness 
 78 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 



Asymmetric Memory QoS in a Parallel Application 

 Threads in a multithreaded application are inter-dependent 
 Some threads can be on the critical path of execution due 

to synchronization; some threads are not 
 How do we schedule requests of inter-dependent threads 

to maximize multithreaded application performance? 
 

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 
 

 Hardware/software cooperative limiter thread estimation: 
 Thread executing the most contended critical section 
 Thread that is falling behind the most in a parallel for loop 

 
 79 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 
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