
Architecting and Exploiting Asymmetry
to Accelerate Bottlenecks in the Cloud

Onur Mutlu
onur@cmu.edu

November 29, 2012
ISTC Retreat, Pittsburgh, PA

mailto:onur@cmu.edu

Warning
 This is an asymmetric talk

 Component 1: A case for asymmetry everywhere

 Component 2: A (relatively) deep dive into a specific

mechanism to exploit asymmetry in cores

 Asymmetry = heterogeneity
 A way to enable specialization/customization

2

The Cloud Setting
 Hardware resources are shared among many threads/apps

in a many-core based cloud computing system
 Cores, caches, interconnects, memory, disks, power, lifetime,

…

 Management of these resources is a very difficult task
 When optimizing parallel/multiprogrammed workloads
 Threads interact unpredictably/unfairly in shared resources

 Power/energy is arguably the most valuable shared resource

 Main limiter to efficiency and performance

3

Shield the Programmer from Shared Resources

 Writing even sequential software is hard enough
 Optimizing code for a complex shared-resource parallel system

will be a nightmare for most programmers

 Programmer should not worry about
(hardware) resource management
 What should be executed where with what resources

 Future cloud computer architectures should be designed to
 Minimize programmer effort to optimize (parallel) programs
 Maximize runtime system’s effectiveness in automatic

shared resource management

 4

Shared Resource Management: Goals

 Future many-core systems should manage power and
performance automatically across threads/applications

 Minimize energy/power consumption
 While satisfying performance/SLA requirements

 Provide predictability and Quality of Service
 Minimize programmer effort

 In creating optimized parallel programs

 Asymmetry and configurability in system resources essential
to achieve these goals

5

Asymmetry Enables Customization

 Symmetric: One size fits all
 Energy and performance suboptimal for different phase behaviors

 Asymmetric: Enables tradeoffs and customization
 Processing requirements vary across applications and phases
 Execute code on best-fit resources (minimal energy, adequate perf.)

6

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Thought Experiment: Asymmetry Everywhere
 Design each hardware resource with asymmetric, (re-

)configurable, partitionable components
 Different power/performance/reliability characteristics
 To fit different computation/access/communication patterns

7

Thought Experiment: Asymmetry Everywhere

 Design the runtime system (HW & SW) to automatically choose
the best-fit components for each workload/phase
 Satisfy performance/SLA with minimal energy
 Dynamically stitch together the “best-fit” chip for each phase

8

Thought Experiment: Asymmetry Everywhere

 Morph software components to match asymmetric HW
components
 Multiple versions for different resource characteristics

9

Many Research and Design Questions
 How to design asymmetric components?

 Fixed, partitionable, reconfigurable components?
 What types of asymmetry? Access patterns, technologies?

 What monitoring to perform cooperatively in HW/SW?

 Automatically discover phase/task requirements

 How to design feedback/control loop between components and
runtime system software?

 How to design the runtime to automatically manage resources?
 Track task behavior, pick “best-fit” components for the entire workload

10

Talk Outline
 Problem and Motivation
 How Do We Get There: Examples
 Bottleneck Identification and Scheduling (BIS)
 Handling Resource Contention Bottlenecks
 Conclusions

11

Exploiting Asymmetry: Simple Examples

12

 Execute critical/serial sections on high-power, high-performance

cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12]

 Programmer can write less optimized, but more likely correct programs

Exploiting Asymmetry: Simple Examples

13

 Execute streaming “memory phases” on streaming-optimized

cores and memory hierarchies
 More efficient and higher performance than general purpose hierarchy

Exploiting Asymmetry: Simple Examples

14

 Partition memory controller and on-chip network bandwidth

asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

 Higher performance and energy-efficiency than symmetric/free-for-all

Exploiting Asymmetry: Simple Examples

15

 Have multiple different memory scheduling policies; apply them

to different sets of threads based on thread behavior [Kim+ MICRO
2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012]

 Higher performance and fairness than a homogeneous policy

Exploiting Asymmetry: Simple Examples

16

 Build main memory with different technologies with different

characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE
CAL’12]

 Map pages/applications to the best-fit memory resource
 Higher performance and energy-efficiency than single-level memory

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Talk Outline
 Problem and Motivation
 How Do We Get There: Examples
 Bottleneck Identification and Scheduling (BIS)
 Handling Resource Contention Bottlenecks
 Conclusions

17

The Problem: Serialized Code Sections
 Many parallel programs cannot be parallelized completely

 Causes of serialized code sections

 Sequential portions (Amdahl’s “serial part”)
 Critical sections
 Barriers
 Limiter stages in pipelined programs

 Serialized code sections
 Reduce performance
 Limit scalability
 Waste energy

 18

Example from MySQL

19

Open database tables

Perform the operations
….

Critical
Section

Parallel

Access Open Tables Cache

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

Sp
ee

du
p

Today

Asymmetric

BIS Summary
 Problem: Performance and scalability of multithreaded applications

are limited by serializing synchronization bottlenecks
 different types: critical sections, barriers, slow pipeline stages
 importance (criticality) of a bottleneck can change over time

 Our Goal: Dynamically identify the most important bottlenecks and
accelerate them
 How to identify the most critical bottlenecks
 How to efficiently accelerate them

 Solution: Bottleneck Identification and Scheduling (BIS)
 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and

implement waiting for bottlenecks with a special instruction (BottleneckWait)
 Hardware: identify bottlenecks that cause the most thread waiting and

accelerate those bottlenecks on large cores of an asymmetric multi-core system

 Improves multithreaded application performance and scalability,
outperforms previous work, and performance improves with more cores

 20

Bottlenecks in Multithreaded Applications
Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists  on the critical path

 Critical sections
 Ensure mutual exclusion  likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing  the latest thread arriving

is on the critical path

 Pipeline stages
 Different stages of a loop iteration may execute on different threads,

slowest stage makes other stages wait  on the critical path

21

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list
repeat
 Lock A
 Traverse list A
 Remove X from A
 Unlock A
 Compute on X
 Lock B
 Traverse list B
 Insert X into B
 Unlock B
until A is empty

22

Lock A is limiter
Lock B is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

23

MySQL running Sysbench queries, 16 threads

Previous Work on Bottleneck Acceleration
 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07]

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09, Top Picks’10]

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11]

No previous work
  can accelerate all types of bottlenecks or
 adapts to fine-grain changes in the importance of bottlenecks

Our goal:
 general mechanism to identify and accelerate performance-limiting

bottlenecks of any type

24

25

Bottleneck Identification and Scheduling (BIS)

 Key insight:
 Thread waiting reduces parallelism and

is likely to reduce performance
 Code causing the most thread waiting
 likely critical path

 Key idea:
 Dynamically identify bottlenecks that cause

the most thread waiting
 Accelerate them (using powerful cores in an ACMP)

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
 BIS instructions

Compiler/Library/Programmer Hardware

26

Bottleneck Identification and Scheduling (BIS)

 while cannot acquire lock
 Wait loop for watch_addr
 acquire lock
 …
 release lock

Critical Sections: Code Modifications

 …
 BottleneckCall bid, targetPC
 …
targetPC: while cannot acquire lock
 Wait loop for watch_addr
 acquire lock
 …
 release lock
 BottleneckReturn bid

27

 BottleneckWait bid, watch_addr

 …

 … Used to keep track of

waiting cycles
Used to enable

acceleration

28

Barriers: Code Modifications
 …
 BottleneckCall bid, targetPC
 enter barrier
 while not all threads in barrier
 BottleneckWait bid, watch_addr
 exit barrier
 …
targetPC: code running for the barrier
 …
 BottleneckReturn bid

29

Pipeline Stages: Code Modifications

 BottleneckCall bid, targetPC
 …
targetPC: while not done
 while empty queue
 BottleneckWait prev_bid
 dequeue work
 do the work …
 while full queue
 BottleneckWait next_bid
 enqueue next work
 BottleneckReturn bid

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
 BIS instructions

Compiler/Library/Programmer Hardware

30

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

 Performance-limiting bottleneck identification and
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways
 Increasing core frequency/voltage
 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP

31

Large core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
 BIS instructions

Compiler/Library/Programmer Hardware

32

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

33

Small Core 1 Large Core 0

Small Core 2

Bottleneck
Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
 BIS instructions

Compiler/Library/Programmer Hardware

34

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

35

Small Core 1 Large Core 0

Small Core 2

Bottleneck
Table (BT)

…

Scheduling Buffer (SB)
bid=x4700, pc, sp, core1

Acceleration
Index Table (AIT)

BottleneckCall x4600
Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

 twc < Threshold

 twc > Threshold

Execute locally Execute remotely

BIS Mechanisms
 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles 
 Accelerating Bottlenecks 

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization
 Preemptive acceleration
 Support for multiple large cores

36

Hardware Cost
 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core,
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB

37

BIS Performance Trade-offs
 Faster bottleneck execution vs. fewer parallel threads

 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality
 Shared data stays on large core (good)
 Private data migrates to large core (bad, but latency hidden with Data

Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency
 Migration latency usually hidden by waiting (good)
 Unless bottleneck not contended (bad, but likely not on critical path)

38

Evaluation Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications
 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator
 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT
 1 large core is area-equivalent to 4 small cores

 Details:
 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
 Small core: 4GHz, in-order, 2-wide, 5-stage
 Private 32KB L1, private 256KB L2, shared 8MB L3
 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

39

BIS Comparison Points (Area-Equivalent)
 SCMP (Symmetric CMP)

 All small cores

 ACMP (Asymmetric CMP)
 Accelerates only Amdahl’s serial portions
 Our baseline

 ACS (Accelerated Critical Sections)
 Accelerates only critical sections and Amdahl’s serial portions
 Applicable to multithreaded workloads

(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)
 Accelerates only slowest pipeline stages
 Applicable to pipeline-parallel workloads (rank, pagemine)

40

BIS Performance Improvement

41

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%
 BIS improves scalability on 4 of the benchmarks

barriers, which ACS
cannot accelerate

limiting bottlenecks change over time
ACS FDP

Why Does BIS Work?

42

 Coverage: fraction of program critical path that is actually identified as bottlenecks
 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks
 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

43

Performance increases with:

1) More small cores

 Contention due to bottlenecks
increases

 Loss of parallel throughput due
to large core reduces

2) More large cores
 Can accelerate

independent bottlenecks
 Without reducing parallel

throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary
 Serializing bottlenecks of different types limit performance of

multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution:
 Dynamically identifies bottlenecks that cause the most thread waiting

and accelerates them on large cores of an ACMP
 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:
 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration
with no programmer effort

44

Talk Outline
 Problem and Motivation
 How Do We Get There: Examples
 Bottleneck Identification and Scheduling (BIS)
 Handling Resource Contention Bottlenecks
 Conclusions

45

Thread Serialization
 Three fundamental causes

 1. Synchronization

 2. Load imbalance

 3. Resource contention

46

Memory Contention as a Bottleneck
 Problem:

 Contended memory regions cause serialization of threads
 Threads accessing such regions can form the critical path
 Data-intensive workloads (MapReduce, GraphLab, Graph500)

can be sped up by 1.5 to 4X by ideally removing contention

 Idea:
 Identify contended regions dynamically
 Prioritize caching the data from threads which are slowed

down the most by such regions in faster DRAM/eDRAM

 Benefits:
 Reduces contention, serialization, critical path

47

Evaluation
 Workloads: MapReduce, GraphLab, Graph500

 Cycle-level x86 platform simulator

 CPU: 8 out-of-order cores, 32KB private L1, 512KB shared L2
 Hybrid Memory: DDR3 1066 MT/s, 32MB DRAM, 8GB PCM

 Mechanisms
 Baseline: DRAM as a conventional cache to PCM
 CacheMiss: Prioritize caching data from threads with highest

cache miss latency
 Region: Cache data from most contended memory regions
 ACTS: Prioritize caching data from threads most slowed down

due to memory region contention

48

Caching Results

49

Talk Outline
 Problem and Motivation
 How Do We Get There: Examples
 Bottleneck Identification and Scheduling (BIS)
 Handling Resource Contention Bottlenecks
 Conclusions

50

Summary
 Cloud applications and phases have varying requirements
 Cloud computers evaluated on multiple metrics/constraints: energy,

performance, reliability, fairness, …

 One-size-fits-all design cannot satisfy all requirements and metrics:
cannot get the best of all worlds

 Asymmetry in design enables tradeoffs: can approximate the best of
all worlds
 Asymmetry in core types  BIS  Good parallel performance + Good

serialized performance
 Asymmetry in main memory  Critical Group Caching  Good non-

contended performance + Good contended performance

 Simple asymmetric designs can be effective and low-cost

51

Thank You

Onur Mutlu

onur@cmu.edu
http://www.ece.cmu.edu/~omutlu

mailto:onur@cmu.edu
http://www.ece.cmu.edu/~omutlu

Architecting and Exploiting Asymmetry
to Accelerate Bottlenecks in the Cloud

Onur Mutlu
onur@cmu.edu

November 29, 2012
ISTC Retreat, Pittsburgh, PA

mailto:onur@cmu.edu

Asymmetric Main Memory

Heterogeneous Memory Systems

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,”
IEEE Comp. Arch. Letters, 2012.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM
 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering
 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:
 What data should be placed in DRAM versus kept in PCM?
 What is the granularity of data movement?
 How to design a low-cost hardware-managed DRAM cache?

 Two idea directions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

 56

DRAM vs. PCM: An Observation
 Row buffers are the same in DRAM and PCM
 Row buffer hit latency same in DRAM and PCM
 Row buffer miss latency small in DRAM, large in PCM

 Accessing the row buffer in PCM is fast
 What incurs high latency is the PCM array access  avoid this

57

CPU
DRA
MCtrl

PCM
Ctrl

Ban
k

Ban
k

Ban
k

Ban
k

Row buffer
DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss

Row-Locality-Aware Data Placement
 Idea: Cache in DRAM only those rows that

 Frequently cause row buffer conflicts  because row-conflict latency is
smaller in DRAM

 Are reused many times  to reduce cache pollution and bandwidth
waste

 Simplified rule of thumb:
 Streaming accesses: Better to place in PCM
 Other accesses (with some reuse): Better to place in DRAM

 Bridges half of the performance gap between all-DRAM and all-PCM
memory on memory-intensive workloads

 Yoon et al."Row Buffer Locality Aware Caching Policies for Hybrid
Memories,” ICCD 2012.

58

http://users.ece.cmu.edu/~omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowbuffer-aware-caching_iccd12.pdf

The Problem with Large DRAM Caches
 A large DRAM cache requires a large metadata (tag +

block-based information) store
 How do we design an efficient DRAM cache?

59

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD X

Access X

Metadata:
X  DRAM

X

Idea 1: Tags in Memory
 Store tags in the same row as data in DRAM

 Store metadata in same row as their data
 Data and metadata can be accessed together

 Benefit: No on-chip tag storage overhead
 Downsides:

 Cache hit determined only after a DRAM access
 Cache hit requires two DRAM accesses

60

Cache block 2 Cache block 0 Cache block 1
DRAM row

Tag
0

Tag
1

Tag
2

Idea 2: Cache Tags in SRAM
 Recall Idea 1: Store all metadata in DRAM

 To reduce metadata storage overhead

 Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
 Cache only a small amount to keep SRAM size small

61

Idea 3: Dynamic Data Transfer Granularity
 Some applications benefit from caching more data

 They have good spatial locality
 Others do not

 Large granularity wastes bandwidth and reduces cache
utilization

 Idea 3: Simple dynamic caching granularity policy

 Cost-benefit analysis to determine best DRAM cache block size
 Group main memory into sets of rows
 Some row sets follow a fixed caching granularity
 The rest of main memory follows the best granularity

 Cost–benefit analysis: access latency versus number of cachings
 Performed every quantum
 62

Methodology
 System: 8 out-of-order cores at 4 GHz

 Memory: 512 MB direct-mapped DRAM, 8 GB PCM

 128B caching granularity
 DRAM row hit (miss): 200 cycles (400 cycles)
 PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles)

 Evaluated metadata storage techniques

 All SRAM system (8MB of SRAM)
 Region metadata storage
 TIM metadata storage (same row as data)
 TIMBER, 64-entry direct-mapped (8KB of SRAM)

63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER TIMBER-Dyn

N
or

m
al

ize
d

W
ei

gh
te

d
Sp

ee
du

p

64

TIMBER Performance

-6%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

0

0.2

0.4

0.6

0.8

1

1.2

SRAM Region TIM TIMBER TIMBER-Dyn

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

 p
er

 W
at

t
(fo

r M
em

or
y

Sy
st

em
)

65

TIMBER Energy Efficiency
18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Asymmetric Memory Controllers

Motivation
• Memory is a shared resource

• Threads’ requests contend for memory
– Degradation in single thread performance
– Can even lead to starvation

• How to schedule memory requests to increase
both system throughput and fairness?

 67

Core Core

Core Core
Memory

1

3

5

7

9

11

13

15

17

8 8.2 8.4 8.6 8.8 9

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

FRFCFS
STFM
PAR-BS
ATLAS

Previous Scheduling Algorithms are Biased

68

System throughput
bias

Fairness
bias

No previous memory scheduling algorithm provides
both the best fairness and system throughput

Better system throughput

Be
tt

er
 fa

irn
es

s

Take turns accessing memory

Why do Previous Algorithms Fail?

69

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread B thread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient

Insight: Achieving Best of Both Worlds

70

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle threads

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Overview: Thread Cluster Memory Scheduling
1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

71

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Prioritize threads according to MPKI

• Increases system throughput
– Least intensive thread has the greatest potential

for making progress in the processor

Non-Intensive Cluster

72

thread

thread

thread

thread

higher
priority lowest MPKI

highest MPKI

Periodically shuffle the priority of threads

• Is treating all threads equally good enough?
• BUT: Equal turns ≠ Same slowdown

Intensive Cluster

73

thread

thread

thread

Increases fairness

Most prioritized higher
priority

thread

thread

thread

Results: Fairness vs. Throughput

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

74

Better system throughput

Be
tt

er
 fa

irn
es

s

5%

39%

8%
5%

TCM provides best fairness and system throughput

Averaged over 96 workloads

Results: Fairness-Throughput Tradeoff

75

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

Be
tt

er
 fa

irn
es

s FRFCFS

TCM Summary

76

• No previous memory scheduling algorithm provides
both high system throughput and fairness
– Problem: They use a single policy for all threads

• TCM is a heterogeneous scheduling policy
1. Prioritize non-intensive cluster  throughput
2. Shuffle priorities in intensive cluster  fairness
3. Shuffling should favor nice threads  fairness

• Heterogeneity in memory scheduling provides the

best system throughput and fairness

More Details on TCM
• Kim et al., “Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior,”
MICRO 2010, Top Picks 2011.

77

Memory Control in CPU-GPU Systems
 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:
 SMS is significantly simpler and more scalable
 SMS provides higher performance and fairness
 78 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.

Asymmetric Memory QoS in a Parallel Application

 Threads in a multithreaded application are inter-dependent
 Some threads can be on the critical path of execution due

to synchronization; some threads are not
 How do we schedule requests of inter-dependent threads

to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:
 Thread executing the most contended critical section
 Thread that is falling behind the most in a parallel for loop

 79 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

	Architecting and Exploiting Asymmetry to Accelerate Bottlenecks in the Cloud�
	Warning
	The Cloud Setting
	Shield the Programmer from Shared Resources
	Shared Resource Management: Goals
	Asymmetry Enables Customization
	Thought Experiment: Asymmetry Everywhere
	Thought Experiment: Asymmetry Everywhere
	Thought Experiment: Asymmetry Everywhere
	Many Research and Design Questions
	Talk Outline
	Exploiting Asymmetry: Simple Examples
	Exploiting Asymmetry: Simple Examples
	Exploiting Asymmetry: Simple Examples
	Exploiting Asymmetry: Simple Examples
	Exploiting Asymmetry: Simple Examples
	Talk Outline
	The Problem: Serialized Code Sections
	Example from MySQL
	BIS Summary
	Bottlenecks in Multithreaded Applications
	Observation: Limiting Bottlenecks Change Over Time
	Limiting Bottlenecks Do Change on Real Applications
	Previous Work on Bottleneck Acceleration
	Bottleneck Identification and Scheduling (BIS)
	Bottleneck Identification and Scheduling (BIS)
	Critical Sections: Code Modifications
	Barriers: Code Modifications
	Pipeline Stages: Code Modifications
	Bottleneck Identification and Scheduling (BIS)
	BIS: Hardware Overview
	Bottleneck Identification and Scheduling (BIS)
	Determining Thread Waiting Cycles for Each Bottleneck
	Bottleneck Identification and Scheduling (BIS)
	Bottleneck Acceleration
	BIS Mechanisms
	Hardware Cost
	BIS Performance Trade-offs
	Evaluation Methodology
	BIS Comparison Points (Area-Equivalent)
	BIS Performance Improvement
	Why Does BIS Work?
	BIS Scaling Results
	BIS Summary
	Talk Outline
	Thread Serialization
	Memory Contention as a Bottleneck
	Evaluation
	Caching Results
	Talk Outline
	Summary
	Thank You
	Architecting and Exploiting Asymmetry to Accelerate Bottlenecks in the Cloud�
	Asymmetric Main Memory
	Heterogeneous Memory Systems
	One Option: DRAM as a Cache for PCM
	DRAM vs. PCM: An Observation
	Row-Locality-Aware Data Placement
	The Problem with Large DRAM Caches
	Idea 1: Tags in Memory
	Idea 2: Cache Tags in SRAM
	Idea 3: Dynamic Data Transfer Granularity
	Methodology
	Slide Number 64
	Slide Number 65
	Asymmetric Memory Controllers
	Motivation
	Previous Scheduling Algorithms are Biased
	Why do Previous Algorithms Fail?
	Insight: Achieving Best of Both Worlds
	Overview: Thread Cluster Memory Scheduling
	Non-Intensive Cluster
	Intensive Cluster
	Results: Fairness vs. Throughput
	Results: Fairness-Throughput Tradeoff
	TCM Summary
	More Details on TCM
	Memory Control in CPU-GPU Systems
	Asymmetric Memory QoS in a Parallel Application

