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Warning 
 This is an asymmetric talk 

 
 Component 1: A case for asymmetry everywhere 

 
 Component 2: A (relatively) deep dive into a specific 

mechanism to exploit asymmetry in cores 
 

 Asymmetry = heterogeneity 
 A way to enable specialization/customization 
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The Cloud Setting 
 Hardware resources are shared among many threads/apps 

in a many-core based cloud computing system 
 Cores, caches, interconnects, memory, disks, power, lifetime, 

… 
 

 Management of these resources is a very difficult task 
 When optimizing parallel/multiprogrammed workloads 
 Threads interact unpredictably/unfairly in shared resources 

 
 Power/energy is arguably the most valuable shared resource 

 Main limiter to efficiency and performance 
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Shield the Programmer from Shared Resources 

 Writing even sequential software is hard enough 
 Optimizing code for a complex shared-resource parallel system 

will be a nightmare for most programmers 
 

 Programmer should not worry about                   
(hardware) resource management 
 What should be executed where with what resources 
 

 Future cloud computer architectures should be designed to 
 Minimize programmer effort to optimize (parallel) programs 
 Maximize runtime system’s effectiveness in automatic     

shared resource management 
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Shared Resource Management: Goals 

 Future many-core systems should manage power and 
performance automatically across threads/applications 
 

 Minimize energy/power consumption 
 While satisfying performance/SLA requirements 

 Provide predictability and Quality of Service 
 Minimize programmer effort 

 In creating optimized parallel programs 
 

 Asymmetry and configurability in system resources essential 
to achieve these goals  
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Asymmetry Enables Customization 

 
 
 
 
 
 
 

 Symmetric: One size fits all 
 Energy and performance suboptimal for different phase behaviors 

 Asymmetric: Enables tradeoffs and customization 
 Processing requirements vary across applications and phases 
 Execute code on best-fit resources (minimal energy, adequate perf.) 
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Thought Experiment: Asymmetry Everywhere 
 Design each hardware resource with asymmetric, (re-

)configurable, partitionable components 
 Different power/performance/reliability characteristics 
 To fit different computation/access/communication patterns 
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Thought Experiment: Asymmetry Everywhere 
 

 Design the runtime system (HW & SW) to automatically choose 
the best-fit components for each workload/phase 
 Satisfy performance/SLA with minimal energy 
 Dynamically stitch together the “best-fit” chip for each phase  
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Thought Experiment: Asymmetry Everywhere 
 

 Morph software components to match asymmetric HW 
components  
 Multiple versions for different resource characteristics 
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Many Research and Design Questions 
 How to design asymmetric components? 

 Fixed, partitionable, reconfigurable components? 
 What types of asymmetry? Access patterns, technologies? 

 
 What monitoring to perform cooperatively in HW/SW? 

 Automatically discover phase/task requirements 
 

 How to design feedback/control loop between components and 
runtime system software? 
 

 How to design the runtime to automatically manage resources? 
 Track task behavior, pick “best-fit” components for the entire workload 
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Talk Outline 
 Problem and Motivation 
 How Do We Get There: Examples 
 Bottleneck Identification and Scheduling (BIS) 
 Handling Resource Contention Bottlenecks 
 Conclusions 
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Exploiting Asymmetry: Simple Examples 
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 Execute critical/serial sections on high-power, high-performance 

cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12] 

 Programmer can write less optimized, but more likely correct programs  



Exploiting Asymmetry: Simple Examples 
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 Execute streaming “memory phases” on streaming-optimized 

cores and memory hierarchies 
 More efficient and higher performance than general purpose hierarchy 



Exploiting Asymmetry: Simple Examples 
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 Partition memory controller and on-chip network bandwidth 

asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks 
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011] 

 Higher performance and energy-efficiency than symmetric/free-for-all 



Exploiting Asymmetry: Simple Examples 
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 Have multiple different memory scheduling policies; apply them 

to different sets of threads based on thread behavior [Kim+ MICRO 
2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012] 

 Higher performance and fairness than a homogeneous policy 



Exploiting Asymmetry: Simple Examples 
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 Build main memory with different technologies with different 

characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE 
CAL’12] 

 Map pages/applications to the best-fit memory resource 
 Higher performance and energy-efficiency than single-level memory 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 



Talk Outline 
 Problem and Motivation 
 How Do We Get There: Examples 
 Bottleneck Identification and Scheduling (BIS) 
 Handling Resource Contention Bottlenecks 
 Conclusions 
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The Problem: Serialized Code Sections 
 Many parallel programs cannot be parallelized completely 

 
 Causes of serialized code sections 

 Sequential portions (Amdahl’s “serial part”) 
 Critical sections 
 Barriers 
 Limiter stages in pipelined programs 
 

 Serialized code sections 
 Reduce performance 
 Limit scalability 
 Waste energy 
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Example from MySQL 
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BIS Summary 
 Problem: Performance and scalability of multithreaded applications  

are limited by serializing synchronization bottlenecks 
 different types: critical sections, barriers, slow pipeline stages 
 importance (criticality) of a bottleneck can change over time 
 

 Our Goal: Dynamically identify the most important bottlenecks and  
accelerate them 
 How to identify the most critical bottlenecks 
 How to efficiently accelerate them 

 

 Solution: Bottleneck Identification and Scheduling (BIS) 
 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and 

implement waiting for bottlenecks with a special instruction (BottleneckWait) 
 Hardware: identify bottlenecks that cause the most thread waiting and 

accelerate those bottlenecks on large cores of an asymmetric multi-core system 
 

 Improves multithreaded application performance and scalability, 
outperforms previous work, and performance improves with more cores 

 20 



Bottlenecks in Multithreaded Applications 
Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

 Amdahl’s serial portions 
 Only one thread exists  on the critical path 

 

 Critical sections 
 Ensure mutual exclusion  likely to be on the critical path if contended 

 

 Barriers 
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path 
 

 Pipeline stages 
 Different stages of a loop iteration may execute on different threads,  

slowest stage makes other stages wait  on the critical path 
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Observation: Limiting Bottlenecks Change Over Time 

A=full linked list; B=empty linked list 
repeat 
 Lock A 
  Traverse list A 
  Remove X from A 
 Unlock A 
 Compute on X 
 Lock B 
  Traverse list B 
  Insert X into B 
 Unlock B 
until A is empty 
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Lock A is limiter 
Lock B is limiter 

32 threads 



Limiting Bottlenecks Do Change on Real Applications 
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MySQL running Sysbench queries, 16 threads 



Previous Work on Bottleneck Acceleration 
 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]  

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07] 
 

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09, Top Picks’10] 
 

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11] 

 
 

No previous work  
  can accelerate all types of bottlenecks or  
 adapts to fine-grain changes in the importance of bottlenecks 

 
 
 
 

Our goal:  
 general mechanism to identify and accelerate performance-limiting 

bottlenecks of any type  
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Bottleneck Identification and Scheduling (BIS) 

 Key insight: 
 Thread waiting reduces parallelism and  

is likely to reduce performance 
 Code causing the most thread waiting                             
 likely critical path 
 
 
 

 Key idea: 
 Dynamically identify bottlenecks that cause  

the most thread waiting 
 Accelerate them (using powerful cores in an ACMP) 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2. Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



   while cannot acquire lock 
    Wait loop for watch_addr 
   acquire lock 
   … 
   release lock 
 

Critical Sections: Code Modifications 

   … 
   BottleneckCall bid, targetPC 
   … 
targetPC:  while cannot acquire lock 
    Wait loop for watch_addr 
   acquire lock 
   … 
   release lock 
   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 
 
 
 
 
 
   … Used to keep track of 

waiting cycles 
Used to enable 

acceleration 
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Barriers: Code Modifications 
   … 
   BottleneckCall bid, targetPC 
   enter barrier 
   while not all threads in barrier 
    BottleneckWait bid, watch_addr 
   exit barrier 
   … 
targetPC:  code running for the barrier 
   … 
   BottleneckReturn bid 
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Pipeline Stages: Code Modifications 

   BottleneckCall bid, targetPC 
   … 
targetPC: while not done 
    while empty queue 
     BottleneckWait prev_bid 
    dequeue work 
    do the work … 
    while full queue 
     BottleneckWait next_bid 
    enqueue next work 
   BottleneckReturn bid 
 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2. Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 

30 

Bottleneck Identification and Scheduling (BIS) 



BIS: Hardware Overview 

 Performance-limiting bottleneck identification and 
acceleration are independent tasks 

 Acceleration can be accomplished in multiple ways 
 Increasing core frequency/voltage 
 Prioritization in shared resources [Ebrahimi+, MICRO’11] 

 Migration to faster cores in an Asymmetric CMP 
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1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2. Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Determining Thread Waiting Cycles for Each Bottleneck 
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1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2. Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Bottleneck Acceleration 
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… 
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Acceleration 
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BottleneckCall x4600 
Execute locally 

BottleneckCall x4700 
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AIT 
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BottleneckReturn x4700 
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bid=x4700, pc, sp, core1 

  twc < Threshold 

  twc > Threshold 

Execute locally Execute remotely 



BIS Mechanisms 
 Basic mechanisms for BIS: 

 Determining Thread Waiting Cycles   
 Accelerating Bottlenecks   

 
 Mechanisms to improve performance and generality of BIS: 

 Dealing with false serialization 
 Preemptive acceleration 
 Support for multiple large cores 
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Hardware Cost 
 Main structures: 

 

 Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement 

 

 Scheduling Buffers (SB): one table per large core,  
as many entries as small cores 
 

 Acceleration Index Tables (AIT): one 32-entry table 
per small core 
 
 
 
 

 Off the critical path 
 

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB 
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BIS Performance Trade-offs 
 Faster bottleneck execution vs. fewer parallel threads 

 Acceleration offsets loss of parallel throughput with large core counts 
 
 
 

 Better shared data locality vs. worse private data locality 
 Shared data stays on large core (good) 
 Private data migrates to large core (bad, but latency hidden with Data 

Marshaling [Suleman+, ISCA’10]) 
 
 
 

 Benefit of acceleration vs. migration latency 
 Migration latency usually hidden by waiting (good) 
 Unless bottleneck not contended (bad, but likely not on critical path) 
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Evaluation Methodology 

 Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications 
 Data mining kernels, scientific, database, web, networking, specjbb 
 

 Cycle-level multi-core x86 simulator 
 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT 
 1 large core is area-equivalent to 4 small cores 
 

 Details: 
 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 
 Small core: 4GHz, in-order, 2-wide, 5-stage 
 Private 32KB L1, private 256KB L2, shared 8MB L3 
 On-chip interconnect: Bi-directional ring, 2-cycle hop latency 
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BIS Comparison Points (Area-Equivalent) 
 SCMP (Symmetric CMP) 

 All small cores 
 
 

 ACMP (Asymmetric CMP) 
 Accelerates only Amdahl’s serial portions 
 Our baseline 

 

 ACS (Accelerated Critical Sections) 
 Accelerates only critical sections and Amdahl’s serial portions 
 Applicable to multithreaded workloads  

(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft) 
 

 FDP (Feedback-Directed Pipelining) 
 Accelerates only slowest pipeline stages 
 Applicable to pipeline-parallel workloads (rank, pagemine) 
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BIS Performance Improvement 
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Optimal number of threads, 28 small cores, 1 large core 

 BIS outperforms ACS/FDP by 15% and ACMP by 32% 
 BIS improves scalability on 4 of the benchmarks 

 

barriers, which ACS  
cannot accelerate 

limiting bottlenecks change over time 
ACS FDP 



Why Does BIS Work? 
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 Coverage: fraction of program critical path that is actually identified as bottlenecks 
 39% (ACS/FDP) to 59% (BIS) 

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks 
 72% (ACS/FDP) to 73.5% (BIS) 
 

Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



BIS Scaling Results 
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Performance increases with: 
 
1) More small cores 

 Contention due to bottlenecks 
increases 

 Loss of parallel throughput due 
to large core reduces 

 
 

2) More large cores 
 Can accelerate  

independent bottlenecks 
 Without reducing parallel 

throughput (enough cores) 

2.4% 
6.2% 

15% 19% 



BIS Summary 
 Serializing bottlenecks of different types limit performance of 

multithreaded applications: Importance changes over time 
 

 BIS is a hardware/software cooperative solution:  
 Dynamically identifies bottlenecks that cause the most thread waiting 

and accelerates them on large cores of an ACMP 
 Applicable to critical sections, barriers, pipeline stages 
 

 BIS improves application performance and scalability: 
 Performance benefits increase with more cores 
 

 Provides comprehensive fine-grained bottleneck acceleration 
with no programmer effort 
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Talk Outline 
 Problem and Motivation 
 How Do We Get There: Examples 
 Bottleneck Identification and Scheduling (BIS) 
 Handling Resource Contention Bottlenecks 
 Conclusions 
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Thread Serialization 
 Three fundamental causes 
 
 1. Synchronization 
  
 2. Load imbalance 
 
 3. Resource contention 
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Memory Contention as a Bottleneck 
 Problem: 

 Contended memory regions cause serialization of threads 
 Threads accessing such regions can form the critical path 
 Data-intensive workloads (MapReduce, GraphLab, Graph500) 

can be sped up by 1.5 to 4X by ideally removing contention 
 

 Idea:  
 Identify contended regions dynamically  
 Prioritize caching the data from threads which are slowed 

down the most by such regions in faster DRAM/eDRAM 
 

 Benefits: 
 Reduces contention, serialization, critical path 
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Evaluation 
 Workloads: MapReduce, GraphLab, Graph500 

 
 Cycle-level x86 platform simulator 

 CPU: 8 out-of-order cores, 32KB private L1, 512KB shared L2 
 Hybrid Memory: DDR3 1066 MT/s, 32MB DRAM, 8GB PCM 
 

 Mechanisms 
 Baseline: DRAM as a conventional cache to PCM 
 CacheMiss: Prioritize caching data from threads with highest 

cache miss latency 
 Region:  Cache data from most contended memory regions 
 ACTS: Prioritize caching data from threads most slowed down 

due to memory region contention 
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Caching Results 
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Talk Outline 
 Problem and Motivation 
 How Do We Get There: Examples 
 Bottleneck Identification and Scheduling (BIS) 
 Handling Resource Contention Bottlenecks 
 Conclusions 
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Summary 
 Cloud applications and phases have varying requirements 
 Cloud computers evaluated on multiple metrics/constraints: energy, 

performance, reliability, fairness, …  
 

 One-size-fits-all design cannot satisfy all requirements and metrics: 
cannot get the best of all worlds 
 

 Asymmetry in design enables tradeoffs: can approximate the best of 
all worlds 
 Asymmetry in core types  BIS  Good parallel performance + Good 

serialized performance 
 Asymmetry in main memory  Critical Group Caching  Good non-

contended performance + Good contended performance 
 

 Simple asymmetric designs can be effective and low-cost 
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Asymmetric Main Memory 



Heterogeneous Memory Systems 

 
 
 
 
 
 
 
 
 
 
 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” 
IEEE Comp. Arch. Letters, 2012. 

 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 
 PCM is main memory; DRAM caches memory rows/blocks 

 Benefits: Reduced latency on DRAM cache hit; write filtering 
 Memory controller hardware manages the DRAM cache 

 Benefit: Eliminates system software overhead 
 

 Three issues: 
 What data should be placed in DRAM versus kept in PCM? 
 What is the granularity of data movement? 
 How to design a low-cost hardware-managed DRAM cache? 

 
 Two idea directions: 

 Locality-aware data placement [Yoon+ , ICCD 2012] 

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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DRAM vs. PCM: An Observation 
 Row buffers are the same in DRAM and PCM 
 Row buffer hit latency same in DRAM and PCM 
 Row buffer miss latency small in DRAM, large in PCM 

 
 
 
 
 

 
 
 
 Accessing the row buffer in PCM is fast 
 What incurs high latency is the PCM array access  avoid this 
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Row-Locality-Aware Data Placement 
 Idea: Cache in DRAM only those rows that 

 Frequently cause row buffer conflicts  because row-conflict latency is 
smaller in DRAM 

 Are reused many times  to reduce cache pollution and bandwidth 
waste 

 

 Simplified rule of thumb: 
 Streaming accesses: Better to place in PCM  
 Other accesses (with some reuse): Better to place in DRAM 

 

 Bridges half of the performance gap between all-DRAM and all-PCM 
memory on memory-intensive workloads 
 

 Yoon et al."Row Buffer Locality Aware Caching Policies for Hybrid 
Memories,”     ICCD 2012. 
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The Problem with Large DRAM Caches 
 A large DRAM cache requires a large metadata (tag + 

block-based information) store 
 How do we design an efficient DRAM cache? 

59 

DRAM PCM 

CPU 

(small, fast cache) (high capacity) 

Mem 
Ctlr 

Mem 
Ctlr 

LOAD X 

Access X 

Metadata: 
X  DRAM 

X 



Idea 1: Tags in Memory 
 Store tags in the same row as data in DRAM 

 Store metadata in same row as their data 
 Data and metadata can be accessed together 

 
 
 
 
 
 

 Benefit: No on-chip tag storage overhead 
 Downsides:  

 Cache hit determined only after a DRAM access 
 Cache hit requires two DRAM accesses 
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Idea 2: Cache Tags in SRAM 
 Recall Idea 1: Store all metadata in DRAM  

 To reduce metadata storage overhead 
 

 Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata 
 Cache only a small amount to keep SRAM size small 
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Idea 3: Dynamic Data Transfer Granularity 
 Some applications benefit from caching more data 

 They have good spatial locality 
 Others do not 

 Large granularity wastes bandwidth and reduces cache 
utilization 

 
 Idea 3: Simple dynamic caching granularity policy 

 Cost-benefit analysis to determine best DRAM cache block size 
 Group main memory into sets of rows 
 Some row sets follow a fixed caching granularity 
 The rest of main memory follows the best granularity 

 Cost–benefit analysis:  access latency versus number of cachings 
 Performed every quantum 
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Methodology 
 System:  8 out-of-order cores at 4 GHz 

 
 Memory: 512 MB direct-mapped DRAM, 8 GB PCM 

 128B caching granularity 
 DRAM row hit (miss): 200 cycles (400 cycles) 
 PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles) 

 
 Evaluated metadata storage techniques 

 All SRAM system (8MB of SRAM) 
 Region metadata storage 
 TIM metadata storage (same row as data) 
 TIMBER, 64-entry direct-mapped (8KB of SRAM) 
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TIMBER Performance 

-6% 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
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TIMBER Energy Efficiency 
18% 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 



Asymmetric Memory Controllers 



Motivation 
• Memory is a shared resource 

 
 

 

• Threads’ requests contend for memory 
– Degradation in single thread performance 
– Can even lead to starvation 

 

• How to schedule memory requests to increase 
both system throughput and fairness? 
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Take turns accessing memory 

Why do Previous Algorithms Fail? 
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Fairness biased approach 
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Insight: Achieving Best of Both Worlds 
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Overview: Thread Cluster Memory Scheduling 
1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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Prioritize threads according to MPKI 
 
 
 
 
 
 
 

• Increases system throughput 
– Least intensive thread has the greatest potential 

for making progress in the processor 
 

Non-Intensive Cluster 
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Periodically shuffle the priority of threads 
 

 
 
 
 
 
 

• Is treating all threads equally good enough? 
• BUT: Equal turns ≠ Same slowdown 

Intensive Cluster 
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Results: Fairness vs. Throughput 
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Results: Fairness-Throughput Tradeoff 
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TCM Summary 

76 

• No previous memory scheduling algorithm provides 
both high system throughput and fairness 
– Problem: They use a single policy for all threads 

 

• TCM is a heterogeneous scheduling policy 
1. Prioritize non-intensive cluster  throughput 
2. Shuffle priorities in intensive cluster  fairness 
3. Shuffling should favor nice threads  fairness 

 
• Heterogeneity in memory scheduling provides the  

best system throughput and fairness 
 



More Details on TCM 
• Kim et al., “Thread Cluster Memory Scheduling: 

Exploiting Differences in Memory Access Behavior,” 
MICRO 2010, Top Picks 2011. 
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Memory Control in CPU-GPU Systems 
 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 
 

 Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 
 SMS is significantly simpler and more scalable 
 SMS provides higher performance and fairness 
 78 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 



Asymmetric Memory QoS in a Parallel Application 

 Threads in a multithreaded application are inter-dependent 
 Some threads can be on the critical path of execution due 

to synchronization; some threads are not 
 How do we schedule requests of inter-dependent threads 

to maximize multithreaded application performance? 
 

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 
 

 Hardware/software cooperative limiter thread estimation: 
 Thread executing the most contended critical section 
 Thread that is falling behind the most in a parallel for loop 

 
 79 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 
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