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Where are GPUs Used?
Cellphones, Laptops, Desktops, and...
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Where are GPUs Used?
Supercomputers and the Cloud
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CPU and GPU: So close and yet so far...
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e Goal: Achieve heterogeneous parallelism by offloading
(general-purpose) computation from CPU to GPU

* Promise: GPUs are great for highly parallel throughput-
oriented workloads

* Reality: CPU<->GPU latency too large.

— GPUs not (yet!) broadly applicable to smaller, more latency-
sensitive application



Motivation #1: Offload Latency
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Motivation #2: Offload Complexity
Millions of design choices

* High-level: Should we
offload to GPU or not?

e GPU software choices:
— #threads

— How/if to use programmer-
controlled shared memory

— should we use the
instruction-configurable

cache?
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This talk

e Mitigating Offload Latency
— Improving GPU Synchronization Support

— [Lustig & Martonosi. Paper to appear at HPCA 2013]
* Mitigating Offload Complexity

— Statistical methods for design space exploration
— [Jia, Shaw, & Martonosi. ISPASS 2012]
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Causes of GPU Offload Latency

1. Overhead of each API call
— Runtime library + kernel driver

2. Interconnect overheads
— For discrete cards in particular (PCle)

3. Synchronization

— Entire array must arrive at GPU (and be sync’ed)
before any dependent kernel can even launch

“Isn’t the offload problem solved by single-chip CPU-
GPU systems?”
NO! #2 is smaller, but #1 and #3 remain!




Our Approach

 Hardware and software support for fine-
grained synchronization as a means to reduce
GPU offload latency

— Full/Empty bits in GPU DRAM for fine-grained
synchronization of CPU<GPU data transfer

— API extensions of CUDA/OpenCL to support
proactive kernel launches and data transfers
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Hardware Support: Full/Empty Bits
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* Drawing from Tera and MIT proposals of the 1990's...

* Associate full/empty bits with GPU memory
— On the critical path for CPU-GPU communication




F/E Bits: How they work?

Basic Operation

* When a GPU thread accesses an “empty” location =>
Block.

 When a location becomes “full” => Unblock any
waiting GPU threads.

Design Variations

* How are F/E bits initialized?

 Who can “fill” F/E bit? Just CPU or both CPU and GPU?
* Should F/E bit be cleared once the request is serviced?




Memory Controller

Separate dependent
requests into different
qgueues for CPU reads,
CPU writes, and GPU
writes

Avoids head-of-line
blocking

Allows simple
implementation:
— Only watch head of queue
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Result: 1.2-1.8X Speedup
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Speedup (rel. to CPU)
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GPU Design Complexity

Lack of resource abstraction:
on-chip storage size limits thread
count '

Large number of concurrent
threads: compute vs. memory
trade-off




Stargazer: Design Space Exploration

* Effective statistical regression-based GPU design space
exploration framework

— Automated: Automatically discover significant factors and
their interactions

— Efficient: Up to 15000x speed-up vs. exhaustive exploration

— Accurate: 1.1% average prediction error when only 0.03% of
the space is sampled

* Example uses of Stargazer

— Design space pruning

— Application characterization




Regression: Sample—Model-Predict

runtime ~ param1 + param2 + param1 : param2
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Regression builds an application-specific performance model which
can predict GPU performance through interpolation




Stargazer Overview

randomly and uniformly across design
parameters: SIMD width, memory bandwidth,
concurrent block count, ...

— Space is large: |P1| x |P2| x ... x |Pn]| points!
performance or power at each sample point
: runtime ~ f(P1) + g(P2) + ... + h(Pn) + q(P1xP2) +
r(P1xP3) + ... + z(Pn-1xPn)

. Automatically discern most-relevant factors
and pairwise interactions




Stargazer: The Stepwise Algorithm
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Prediction Accuracy vs. Sample Size
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Test set size: 200
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At SIMD = 32: Diverse Secondary Factors
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Stargazer: Summary

* Reduce design exploration time

— Automatically prune design space

— 30-60 samples: < 5% error for most programs

— Up to 15000x simulation time reduction (60 samples)
* Application characterization

— Can be used to tune parameters

— Can be used to plan offloads and schedules




Overall Research Focus

 How and where to compute?
— Offloading and planning on heterogeneous platforms
— On-chip, on-device, and cross-cloud
— Manage performance, powetr, ...

 How and where to communicate?

— Scheduling and heuristics for planning off-device
communication

— Optimize latency, bandwidth, energy, cost.
* Pushing towards a new Hardware-Software Contract

— For architects: Need abstractions above ISA to manage
portability across different levels of capability and
specialization.

— For systems folks: Nimbly shift portions of computation across

very diverse and distributed heterogeneous pool of resources.
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