Heterogeneous Parallelism and GPU Offloading:
Optimization and Synchronization Challenges

Margaret Martonosi

Princeton University

Where are GPUs Used?
Cellphones, Laptops, Desktops, and...

Ivy Bridge

Where are GPUs Used?
Supercomputers and the Cloud

Rank Computer Accelerator Rank Computer Accelerator
. . <X (inteD nsice
itan NVIDIA. 1 Beacon —_—
_Testa Xeon Phi J
FIREPRD
2 SANAM GRAPHICS

AMDZ1

|
NVIDIA.

| TesLa |
—

o
NVIDIA.

T\ TESLA™ | 1
—’

7 Stampede 3 Titan

8 Tianhe-1A nViDIA._ 4 Todi

CPU and GPU: So close and yet so far...

|

\

\ SM SM SM SM

| A A 7. 7Y

\ U - !
< ——>Host IF <> GPU Interconnection Network

CPU-GPU . - -
CPU Interconnec t \|/ \|/ |

| s || 1os |

| Memory | Memory Memory

\ Controller || Controller | ... Controller

| | DRAM || DRAM DRAM

\

e Goal: Achieve heterogeneous parallelism by offloading
(general-purpose) computation from CPU to GPU

* Promise: GPUs are great for highly parallel throughput-
oriented workloads

* Reality: CPU<->GPU latency too large.

— GPUs not (yet!) broadly applicable to smaller, more latency-
sensitive application

Motivation #1: Offload Latency

e As kernel size increases, BreadthFirstSearch Runtime
. 1.E+06
eventually GPU is ~
fastest N o | om
S 1E+04 [Faster Faster
* Our goal: lower this $ 1e0s el
threshold so more T .,
5 v
kernels see offload 5 o0
benefits L E400

2A8 271 2714 2717 2720

Problem Size

+=CPU/n=1 =#=CPU/OMP n=8
CPU/OMP n=16 GPU/CUDA

Motivation #2: Offload Complexity
Millions of design choices

* High-level: Should we
offload to GPU or not?

e GPU software choices:
— #threads

— How/if to use programmer-
controlled shared memory

— should we use the
instruction-configurable

cache?

runtime (cycles)
o =
B (e))
< <

o
N
<

* + Hardware design choices Matrix Multiply—3 Factors

This talk

e Mitigating Offload Latency
— Improving GPU Synchronization Support

— [Lustig & Martonosi. Paper to appear at HPCA 2013]
* Mitigating Offload Complexity

— Statistical methods for design space exploration
— [Jia, Shaw, & Martonosi. ISPASS 2012]

This talk

* Mitigating Offload Latency
— Improving GPU Synchronization Support

— [Lustig & Martonosi. Paper to appear at HPCA 2013]
* Mitigating Offload Complexity

— Statistical methods for design space exploration
— [Jia, Shaw, & Martonosi. ISPASS 2012]

Causes of GPU Offload Latency

1. Overhead of each API call
— Runtime library + kernel driver

2. Interconnect overheads
— For discrete cards in particular (PCle)

3. Synchronization

— Entire array must arrive at GPU (and be sync’ed)
before any dependent kernel can even launch

“Isn’t the offload problem solved by single-chip CPU-
GPU systems?”
NO! #2 is smaller, but #1 and #3 remain!

Our Approach

 Hardware and software support for fine-
grained synchronization as a means to reduce
GPU offload latency

— Full/Empty bits in GPU DRAM for fine-grained
synchronization of CPU<GPU data transfer

— API extensions of CUDA/OpenCL to support
proactive kernel launches and data transfers

amcppHtan | ” Improving kernel
! | (3) E_
e B launch and
MemcpyDtoH |- [E | Before _ o
StreamSync - E N , plpellnlng
InputArray - E HINES
OutputArray - E
o CPU: API Call GPU: Sync [~
first_cmd™"data_ready CPU: Driver A GPU: Exec mmmmm
Time (microseconds) CPU-GPU Xfer mmmmm GPU: Addr. Full exzzz
Kernel 51] i (3)? 1 E . GOaI
wemepyoto |-[|F] .. e 2 1 1) Send kernel early.
vemepysion | @ [T | 2) Execution launches
i S immediately, but stalls until
StreamSync | : NG NG NG N - .
' R data arrives at GPU.
it I =+ | 3)Likewise, pipeline data return
OutputArray E (J%)E_E E - to CPU
tﬁrst_cmd tdata_ready thinish

Time (microseconds)

Hardware Support: Full/Empty Bits

CPU | GPU
|
| SM SM SM SM
A N A N
| b J !
<—|—>Host IF <> GPU Interconnection Network
CPU-GPU R R
CPU Interconnect | |
Core | v v
| L23% L2%
| Memory Memory
Controll Controller
| /7 3 ¥
|
| DRA F/E DRAM F/E

* Drawing from Tera and MIT proposals of the 1990's...

* Associate full/empty bits with GPU memory
— On the critical path for CPU-GPU communication

F/E Bits: How they work?

Basic Operation

* When a GPU thread accesses an “empty” location =>
Block.

 When a location becomes “full” => Unblock any
waiting GPU threads.

Design Variations

* How are F/E bits initialized?

 Who can “fill” F/E bit? Just CPU or both CPU and GPU?
* Should F/E bit be cleared once the request is serviced?

Memory Controller

Separate dependent
requests into different
qgueues for CPU reads,
CPU writes, and GPU
writes

Avoids head-of-line
blocking

Allows simple
implementation:
— Only watch head of queue

Aggressive: Watch first-N
entries in queue

Interconnect

Memory Controller 1

L2 Cache

l CPU
Non-Trig.
Queue

|
Demux ‘
?r?;gered GPU Return
Queue Queue Queue

Mux ‘

|

DRAM Scheduler

F/E bits

GPU DRAM

Result: 1.2-1.8X Speedup

e
© O N B O 0 O

o
(0))
|

Speedup (rel. to Baseline)
o
o

o
N
|

o
(@)
|

vectorAdd matrixMul histogram64 HotSpot FIBLookup BlackScholes

M GPU Baseline M Qverlap-Start & Overlap-Finish M Full-Overlap

Speedup (rel. to CPU)
o O O O
o N B o

Shifting CPU-GPU Crossover point:

= =
L N D O

VectorAdd Example

8k 16k 32k 64k 128k 256k

Vector Size

B GPU Baseline M Qverlap-Start = Half Overlap ™ Full-Overlap

This talk

e Mitigating Offload Latency
— Improving GPU Synchronization Support

— [Lustig & Martonosi. Paper to appear at HPCA 2013]
* Mitigating Offload Complexity

— Statistical methods for design space exploration
— [Jia, Shaw, & Martonosi. ISPASS 2012]

GPU Design Complexity

Lack of resource abstraction:
on-chip storage size limits thread
count '

Large number of concurrent
threads: compute vs. memory
trade-off

Stargazer: Design Space Exploration

* Effective statistical regression-based GPU design space
exploration framework

— Automated: Automatically discover significant factors and
their interactions

— Efficient: Up to 15000x speed-up vs. exhaustive exploration

— Accurate: 1.1% average prediction error when only 0.03% of
the space is sampled

* Example uses of Stargazer

— Design space pruning

— Application characterization

Regression: Sample—Model-Predict

runtime ~ param1 + param2 + param1 : param2

~
~
S~

-
-

Regression builds an application-specific performance model which
can predict GPU performance through interpolation

Stargazer Overview

randomly and uniformly across design
parameters: SIMD width, memory bandwidth,
concurrent block count, ...

— Space is large: |P1| x |P2| x ... x |Pn]| points!
performance or power at each sample point
: runtime ~ f(P1) + g(P2) + ... + h(Pn) + q(P1xP2) +
r(P1xP3) + ... + z(Pn-1xPn)

. Automatically discern most-relevant factors
and pairwise interactions

Stargazer: The Stepwise Algorithm

current model M={}

Initialization
unused parameter set T = {P,, P,, .., P,} B
while T is not empty J
for each P; in T If the next most
generate a tentative model M, = M + P, significant factor

with the highest adjusted Rr2 | [ndeed affects
runtime, include

it in the model

select the M;

1lmaX
if M,,..’s adjusted R*> > M’s R?

M= My T =T - P;

imax?

for each P; (j != 1) already in M

Also test its
interactions with
included factors—

if interaction P;:P; is significant
M=M=+ P;:P,

else Else exit the
|ﬂetnjpr] Nl | FOLHHWG

Prediction Accuracy vs. Sample Size

fast training
16

14 -
12
10 [
8 L

fffffff backprop
ffffffff - bfs
— hotspot
——————— nw
-------- matMul

Mean Relative Error (%)

o N B~ O
|

150 200 250 ! BOOE

Tramlng sample size
good accuracy (only O 03% of the whole space!)

Test set size: 200

Repeated 5 times

At SIMD = 32: Diverse Secondary Factors

0.9
0.8 WS
0.7 #blk:intra
0.6 ®intra
0.5 ®smp
0.4 H #blk:dram
0.3 ® dram
0.2 M #blk
0.1
0 - Stargazer can
o

be used
S O RS O > . .
WK Ol q? N ’@Q NI QB iteratively on a

Contributions to R?

\&&OQ ©

> N & smaller
subspace

Stargazer: Summary

* Reduce design exploration time

— Automatically prune design space

— 30-60 samples: < 5% error for most programs

— Up to 15000x simulation time reduction (60 samples)
* Application characterization

— Can be used to tune parameters

— Can be used to plan offloads and schedules

Overall Research Focus

 How and where to compute?
— Offloading and planning on heterogeneous platforms
— On-chip, on-device, and cross-cloud
— Manage performance, powetr, ...

 How and where to communicate?

— Scheduling and heuristics for planning off-device
communication

— Optimize latency, bandwidth, energy, cost.
* Pushing towards a new Hardware-Software Contract

— For architects: Need abstractions above ISA to manage
portability across different levels of capability and
specialization.

— For systems folks: Nimbly shift portions of computation across

very diverse and distributed heterogeneous pool of resources.

Acknowledgments

e Students:

— Elba Garza, Tae Jun Ham, Ali JavadiAbhari, Wenhao lJia,
Dan Lustig, Ozlem Bilgir Yetim, Yavuz Yetim.

e Other Collaborators:

— Ramon Caceres, Sibren Isaacman, Manos Koukoumidis,
Kelly Shaw, Kevin Skadron, Ke Wang.

