
Carlos Guestrin

Yucheng
Low

Aapo
Kyrola

Danny
Bickson

Machine Learning for Big Data in the Cloud

Haijie
Gu

Joseph
Gonzalez

Joseph
Bradley

Needless to Say, We Need
Machine Learning for Big Data

72 Hours a Minute
YouTube 28 Million

Wikipedia Pages

1 Billion
Facebook Users

6 Billion
Flickr Photos

“… data a new class of economic asset,
like currency or gold.”

How will we
design and implement

parallel learning systems?

Big Learning

A Shift Towards Parallelism

GPUs Multicore Clusters Clouds Supercomputers

 ML experts repeatedly solve the same parallel
design challenges:

Race conditions, distributed state, communication…

The resulting code is:
difficult to maintain, extend, debug…

Avoid these problems by using
high-level abstractions

CPU 1 CPU 2 CPU 3 CPU 4

Data Parallelism (MapReduce)

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

1
7
.
5

6
7
.
5

1
4
.
9

3
4
.
3

Solve a huge number of independent subproblems

MapReduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-Parallel Graph-Parallel

Cross
Validation

Feature
Extraction

MapReduce

Computing Sufficient
Statistics

Graphical Models
Gibbs Sampling

Belief Propagation
Variational Opt.

Semi-Supervised
Learning

Label Propagation
CoEM

Graph Analysis
PageRank

Triangle Counting

Collaborative
Filtering

Tensor Factorization

Is there more to
Machine Learning

?

The Power of
Dependencies

where the value is!

Examples of
Graphs in

Machine Learning

Label a Face and Propagate

Pairwise similarity not enough…

Not similar enough
to be sure

Propagate Similarities & Co-occurrences
for Accurate Predictions

similarity
edges

co-occurring
faces

further evidence

Collaborative Filtering: Exploiting Dependencies

City of God

Wild Strawberries

The Celebration

La Dolce Vita

Women on the Verge of a
Nervous Breakdown

What do I
recommend???

Latent Topic Modeling (LDA)

Cat

Apple

Growth

Hat

Plant

Example Topics Discovered from Wikipedia

Data

Machine Learning Pipeline

images

docs

movie
ratings

Extract
Features

faces

important
words

side
info

Graph
Formation

similar
faces

shared
words

rated
movies

Structured
Machine
Learning
Algorithm

belief
propagation

LDA

collaborative
filtering

Value
from
Data

face
labels

doc
topics

movie
recommend.

Data

Parallelizing Machine Learning

Extract
Features

Graph
Formation Structured

Machine
Learning
Algorithm

Value
from
Data

Graph Ingress
mostly data-parallel

Graph-Structured
Computation

graph-parallel

ML Tasks Beyond Data-Parallelism

Data-Parallel Graph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Graphical Models
Gibbs Sampling

Belief Propagation
Variational Opt.

Semi-Supervised
Learning

Label Propagation
CoEM

Graph Analysis
PageRank

Triangle Counting

Collaborative
Filtering

Tensor Factorization

Example of a
Graph-Parallel

Algorithm

PageRank

What’s the rank
of this user?

Rank?

Depends on rank
of who follows her

Depends on rank
of who follows them…

Loops in graph  Must iterate!

PageRank Iteration

α is the random reset probability
wji is the prob. transitioning (similarity) from j to i

R[i]

R[j]
wji Iterate until convergence:

“My rank is weighted
average of my friends’ ranks”

Properties of Graph Parallel Algorithms

Dependency
Graph

Iterative
Computation

My Rank

Friends Rank

Local
Updates

Addressing Graph-Parallel ML

Data-Parallel Graph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Graphical Models
Gibbs Sampling

Belief Propagation
Variational Opt.

Semi-Supervised
Learning

Label Propagation
CoEM

Data-Mining
PageRank

Triangle Counting

Collaborative
Filtering

Tensor Factorization

Map Reduce? Graph-Parallel Abstraction

Graph Computation:

Synchronous
v.

Asynchronous

Barrier
Bulk Synchronous Parallel Model:
Pregel (Giraph)

Compute Communicate

[Valiant ‘90]

Bulk synchronous
parallel model

provably inefficient
for some ML tasks

Analyzing Belief Propagation

A

B

Priority Queue
Smart Scheduling

focus here

[Gonzalez, Low, G. ‘09]

Asynchronous Parallel Model (rather than BSP)
fundamental for efficiency

important
influence

Asynchronous Belief Propagation

Synthetic Noisy Image

Cumulative Vertex Updates

Many
Updates

Few
Updates

Algorithm identifies and focuses
on hidden sequential structure

Graphical Model

Challenge = Boundaries

BSP ML Problem:
Synchronous Algorithms can be Inefficient

Theorem:
Bulk Synchronous BP
O(#vertices) slower

than Asynchronous BP

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8

Ru
nt

im
e

in
 S

ec
on

ds

Number of CPUs

Bulk Synchronous (e.g., Pregel)

Asynchronous Splash BP

Efficient parallel
implementation was

painful, painful, painful…

The Need for a New Abstraction

Data-Parallel Graph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Graphical Models
Gibbs Sampling

Belief Propagation
Variational Opt.

Semi-Supervised
Learning

Label Propagation
CoEM

Data-Mining
PageRank

Triangle Counting

Collaborative
Filtering

Tensor Factorization

BSP, e.g., Pregel

Need: Asynchronous, Dynamic Parallel Computations

The GraphLab Goals

Efficient
parallel

predictions

Know how to
solve ML problem

on 1 machine

Data Graph
Data associated with vertices and edges

Vertex Data:
• User profile text
• Current interests estimates

Edge Data:
• Similarity weights

Graph:
• Social Network

How do we program
graph computation?

“Think like a Vertex.”
-Malewicz et al. [SIGMOD’10]

pagerank(i, scope){
 // Get Neighborhood data
 (R[i], wij, R[j]) scope;

 // Update the vertex data

 // Reschedule Neighbors if needed
 if R[i] changes then
 reschedule_neighbors_of(i);
}

Update Functions
User-defined program: applied to
vertex transforms data in scope of vertex

Dynamic
computation

Update function applied (asynchronously)
in parallel until convergence

Many schedulers available to prioritize computation

Ensuring Race-Free Code
How much can computation overlap?

Need for Consistency?

No Consistency

Higher
Throughput

(#updates/sec)

Potentially Slower
Convergence of ML

Consistency in Collaborative Filtering

0.5

1

2

4

8

16

32

64

128

0 2 4 6 8

Tr
ai

n
RM

SE

Updates Millions

Dynamic Inconsistent

Dynamic

Netflix data, 8 cores

Consistent updates

Inconsistent updates

GraphLab guarantees consistent updates

User-tunable consistency levels
trades off parallelism & consistency

The GraphLab Framework

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

Bayesian Tensor
Factorization

Gibbs Sampling
Dynamic Block Gibbs Sampling

Matrix
Factorization

Lasso

SVM

Belief Propagation PageRank

CoEM

K-Means

SVD

LDA

…Many others…
Linear Solvers

Splash Sampler
Alternating Least

Squares

Never Ending Learner Project (CoEM)

Hadoop 95 Cores 7.5 hrs

Distributed
GraphLab

32 EC2
machines

80 secs

0.3% of Hadoop time

2 orders of mag faster 
 2 orders of mag cheaper

GraphLab 1 provided exciting
scaling performance

But…

Thus far…

We couldn’t scale up to
Altavista Webgraph 2002

1.4B vertices, 6.7B edges

Natural Graphs

[Image from WikiCommons]

Problem:

Existing distributed graph
computation systems perform

poorly on Natural Graphs

Achilles Heel: Idealized Graph Assumption

Assumed… But, Natural Graphs…

Small degree 
Easy to partition Many high degree vertices

(power-law degree distribution)


Very hard to partition

Power-Law Degree Distribution

High-Degree
Vertices:

1% vertices adjacent
to 50% of edges

N
um

be
r o

f V
er

tic
es

AltaVista WebGraph
1.4B Vertices, 6.6B Edges

Degree

High Degree Vertices are Common

U
se

rs

Movies

Netflix

“Social” People Popular Movies

θ
Z
w
Z
w
Z
w
Z
w

θ
Z
w
Z
w
Z
w
Z
w

θ
Z
w
Z
w
Z
w
Z
w

θ
Z
w
Z
w
Z
w
Z
w

B α

Hyper Parameters

Do
cs

Words

LDA

Common Words

Obama

Power-Law Degree Distribution
“Star Like” Motif

President
Obama Followers

Problem:
High Degree Vertices  High
Communication for Distributed Updates

Y

Machine 1 Machine 2

Natural graphs do not have low-cost balanced cuts
 [Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,…) perform poorly
 [Abou-Rjeili et al. 06]

Extremely slow and require substantial memory

Data transmitted
across network

O(# cut edges)

Random Partitioning
Both GraphLab 1 and Pregel proposed Random
(hashed) partitioning for Natural Graphs

Machine 1 Machine 2

For p Machines:

10 Machines  90% of edges cut
100 Machines  99% of edges cut!

All data is communicated… Little advantage over MapReduce

Machine 1 Machine 2

Split High-Degree vertices
New Abstraction  Leads to this Split Vertex Strategy

Program
For This

Run on This

Gather Information
About Neighborhood

Apply Update to Vertex

Scatter Signal to Neighbors
& Modify Edge Data

Common Pattern for Update Fncs.

GraphLab_PageRank(i)
 // Compute sum over neighbors
 total = 0
 foreach(j in in_neighbors(i)):
 total = total + R[j] * wji

 // Update the PageRank
 R[i] = 0.1 + total

 // Trigger neighbors to run again
 if R[i] not converged then
 foreach(j in out_neighbors(i))
 signal vertex-program on j

R[i]

R[j]
wji

Many ML Algorithms fit
into GAS Model

graph analytics, inference in graphical

models, matrix factorization,
collaborative filtering, clustering, LDA, …

Machine 2 Machine 1

Machine 4 Machine 3

Distributed Execution of a GraphLab 2
Vertex-Program

Σ1 Σ2

Σ3 Σ4

+ + +

Y Y Y Y

Y’

Σ

Y’ Y’ Y’ Gather

Apply

Scatter

81

Minimizing Communication in GraphLab 2:
Vertex Cuts

Y Communication linear
in # spanned machines

Y Y

A vertex-cut minimizes
machines per vertex

Percolation theory suggests Power Law graphs can be split
by removing only a small set of vertices [Albert et al. 2000]


Small vertex cuts possible!

GraphLab 2 includes novel vertex cut algorithms


Provides order of magnitude gains in performance

From the Abstraction
to a System

Linux Cluster Services (Amazon AWS)

MPI/TCP-IP Comms PThreads Boost HDFS

Sync. Engine Async. Engine
Fault Tolerance Distributed Graph

Map/Reduce Ingress

GraphLab Version 2.1 API (C++)

Graph
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering

34.8 Billion Triangles
Triangle Counting on Twitter Graph

64 Machines
1.5 Minutes

1636 Machines
423 Minutes

Hadoop
[WWW’11]

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

Why? Wrong Abstraction 
 Broadcast O(degree2) messages per Vertex

Topic Modeling (LDA)
English language Wikipedia

2.6M Documents, 8.3M Words, 500M Tokens

Computationally intensive algorithm

0 20 40 60 80 100 120 140 160

Smola et al.

GraphLab2

Million Tokens Per Second

100 Yahoo! Machines

64 cc2.8xlarge EC2 Nodes

Specifically engineered for this task

200 lines of code & 4 human hours

PageRank

40M Webpages, 1.4 Billion Links

GraphLab

Twister

Hadoop
5.5 hrs

1 hr

8 min

$180

$41

$12

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]

How well does GraphLab scale?

Yahoo Altavista Web Graph (2002):
 One of the largest publicly available webgraphs

1.4B Webpages, 6.7 Billion Links

1024 Cores (2048 HT) 4.4 TB RAM

64 HPC Nodes

7 seconds per iter.
1B links processed per second

30 lines of user code

GraphChi: Going small with GraphLab

Solve huge problems on
small or embedded

devices?

Key: Exploit non-volatile memory
(starting with SSDs and HDs)

GraphChi – disk-based GraphLab

Challenge:
 Random Accesses

Novel GraphChi solution:
 Parallel sliding windows method 
 minimizes number of random accesses

Triangle Counting on Twitter Graph
40M Users
1.2B Edges

Total: 34.8 Billion Triangles

Hadoop results from [Suri & Vassilvitskii '11]

59 Minutes

64 Machines, 1024 Cores
1.5 Minutes

GraphLab2

GraphChi

Hadoop

1636 Machines
423 Minutes

59 Minutes, 1 Mac Mini!

Next: Online GraphLab
Today, batch computation:

Predictions

But, must continuously make predictions in presence of
changing data (new users, friends, de-friending, …)

Data

Predictions Queries
Online

GraphChi: Streaming Graph Updates

Stream of Twitter
social graph updates

Ingest 100,000
graph updates / sec

While simultaneously
computing Pagerank on a Mac
Mini, sustaining throughput of

200K updates/second

Release 2.1 available now
http://graphlab.org

Documentation… Code… Tutorials… (more on the way)

GraphChi 0.1 available now
http://graphchi.org

GraphChi: Going small with GraphLab

Solve huge problems on
small or embedded

devices?

Key: Exploit non-volatile memory
(starting with SSDs and HDs)

Kyrola+al OSDI12

Naive Graph Disk Layouts

Symmetrized adjacency file with values,

vertex in-neighbors out-neighbors

5 3:2.3, 19: 1.3, 49: 0.65,... 781: 2.3, 881: 4.2..

....

19 3: 1.4, 9: 12.1, ... 5: 1.3, 28: 2.2, ...

vertex in-neighbor-ptr out-neighbors

5 3: 881, 19: 10092, 49: 20763,... 781: 2.3, 881: 4.2..

....

19 3: 882, 9: 2872, ... 5: 1.3, 28: 2.2, ...

Random
write synchronize

Random
read/write read

… or with file index pointers

5 19

GraphChi – disk-based GraphLab

Novel Parallel Sliding
Windows algorithm

Fast 
Solves tasks as large as current
distributed systems
Minimizes non-sequential disk
accesses

Efficient on both SSD and hard-
drive

Parallel, asynchronous
execution

Parallel Sliding Windows Layout

Shard 1 Shard 2 Shard 3 Shard 4

Vertices
1..100

Vertices
101..700

Vertices
701..1000

Vertices
1001..10000

Shards small enough to fit in memory; balance size of shards

Shard: in-edges for subset of vertices; sorted by source_id
in

-e
dg

es
 fo

r v
er

tic
es

 1
..1

00

so
rt

ed
 b

y
so

ur
ce

_i
d

Parallel Sliding Windows
Execution

Shard 1

Vertices
1..100

Vertices
101..700

Vertices
701..1000

Vertices
1001..10000

in
-e

dg
es

 fo
r v

er
tic

es
 1

..1
00

so

rt
ed

 b
y

so
ur

ce
_i

d

Load all in-edges
in memory

Load subgraph for vertices 1..100

What about out-edges?
 Arranged in sequence in other shards!
 And sequential writes!

Shard 2 Shard 3 Shard 4

Parallel Sliding Windows
Execution

Shard 1

Vertices
1..100

Vertices
101..700

Vertices
701..1000

Vertices
1001..10000

in
-e

dg
es

 fo
r v

er
tic

es
 1

..1
00

so

rt
ed

 b
y

so
ur

ce
_i

d

Load all in-edges
in memory

Load subgraph for vertices 101..700

Only O(P2) random reads
per pass on entire graph

Shard 2 Shard 3 Shard 4

Triangle Counting in Twitter Graph
40M Users
1.2B Edges

Total: 34.8 Billion Triangles

Hadoop results from [Suri & Vassilvitskii '11]

GraphLab

GraphChi

Hadoop 59 Minutes

64 Machines, 1024 Cores
1.5 Minutes

GraphLab

GraphChi

Hadoop

1536 Machines
423 Minutes

59 Minutes, 1 Mac Mini!

Application Graph Comparison GraphChi on Mac
Mini (SSD)

Pagerank (3 iter.) Twitter-2010
 (1.5B edges)

SPARK, 50 machines
8.1 min

13 min

Pagerank (100 iter.) Uk-union
(3.7B edges)

STANFORD GPS (PREGEL), 30 machines
144 min

581 min

WebGraph-Belief-
Propagation (U Kang et al.)

Yahoo-web
(6.7B edges)

PEGASUS, 100 machines
22 min

27 min

Matrix factorization (ALS)
(10 iter.)

Netflix movies
(99M edges)

GRAPHLAB, 8-core machine
4.7 min

9.8 min

Triangle counting Twitter-2010 HADOOP, 1636 machines
423 min

45 min

Node, comparison results do not include time to transfer the data to cluster, or the time to load the graph from disk.

Apps & Performance

Goal: Real-Time GraphLab
Today, batch computation:

Predictions

But, must continuously make predictions in presence of
changing data (new users, friends, de-friending, sensors…)

Data

Predictions Queries
Real-Time

GraphChi with Streaming Graphs
Keep edge additions and deletions in-memory cache,
per shard
When cache too large, split shard

Or merge as needed
Resort shard in memory, since small enough

Shard 2

Shard 2

Cache

Shard 2a Shard 2b

Streaming Graph Updates

Stream of Twitter
social graph updates

Ingest 100,000
graph updates / sec

While simultaneously
computing Pagerank on a Mac
Mini, sustaining throughput of

200K updates/second

GraphChi: Dynamic Graphs Evaluation

Mac Mini / SSD: streaming of Twitter graph (1.5B edges) from the hard drive
with gapped rate of 100K or 200K edges/sec.

N
um

be
r o

f e
dg

e

co
m

pu
ta

tio
ns

 p
er

 se
co

nd

	Slide Number 1
	Needless to Say, We Need Machine Learning for Big Data
	How will we�design and implement �parallel learning systems?�
	A Shift Towards Parallelism
	Data Parallelism (MapReduce)
	MapReduce for Data-Parallel ML
	Slide Number 14
	Slide Number 15
	Slide Number 16
	The Power of Dependencies��where the value is!
	Examples of�Graphs in �Machine Learning
	Label a Face and Propagate
	Pairwise similarity not enough…
	Propagate Similarities & Co-occurrences for Accurate Predictions
	Collaborative Filtering: Exploiting Dependencies
	Latent Topic Modeling (LDA)
	Example Topics Discovered from Wikipedia
	Machine Learning Pipeline
	Parallelizing Machine Learning
	ML Tasks Beyond Data-Parallelism
	Example of a�Graph-Parallel�Algorithm
	PageRank
	PageRank Iteration
	Properties of Graph Parallel Algorithms
	Addressing Graph-Parallel ML
	Slide Number 34
	Bulk Synchronous Parallel Model: Pregel (Giraph)
	Slide Number 38
	Analyzing Belief Propagation
	Asynchronous Belief Propagation
	BSP ML Problem: �Synchronous Algorithms can be Inefficient
	The Need for a New Abstraction
	The GraphLab Goals
	Slide Number 45
	Data Graph
	How do we program �graph computation?
	Update Functions
	Ensuring Race-Free Code
	Need for Consistency?
	Consistency in Collaborative Filtering
	The GraphLab Framework
	Slide Number 53
	Never Ending Learner Project (CoEM)
	GraphLab 1 provided exciting�scaling performance
	Natural Graphs
	Existing distributed graph computation systems perform poorly on Natural Graphs
	Achilles Heel: Idealized Graph Assumption
	Power-Law Degree Distribution
	High Degree Vertices are Common
	Power-Law Degree Distribution
	Problem: �High Degree Vertices  High Communication for Distributed Updates
	Random Partitioning
	Slide Number 66
	Common Pattern for Update Fncs.
	Many ML Algorithms fit into GAS Model��graph analytics, inference in graphical models, matrix factorization, collaborative filtering, clustering, LDA, …
	Distributed Execution of a GraphLab 2 Vertex-Program
	Minimizing Communication in GraphLab 2: Vertex Cuts
	��From the Abstraction �to a System
	Slide Number 87
	Triangle Counting on Twitter Graph
	Topic Modeling (LDA)
	PageRank
	How well does GraphLab scale?
	GraphChi: Going small with GraphLab
	GraphChi – disk-based GraphLab
	Triangle Counting on Twitter Graph
	Next: Online GraphLab
	GraphChi: Streaming Graph Updates
	Release 2.1 available now
	GraphChi: Going small with GraphLab
	Naive Graph Disk Layouts
	GraphChi – disk-based GraphLab
	Parallel Sliding Windows Layout
	Parallel Sliding Windows Execution
	Parallel Sliding Windows Execution
	Triangle Counting in Twitter Graph
	Apps & Performance
	Goal: Real-Time GraphLab
	GraphChi with Streaming Graphs
	Streaming Graph Updates
	GraphChi: Dynamic Graphs Evaluation

