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Needless to Say, We Need
Machine Learning for Big Data

(1] Tube:

1 Billion 72 Hours a Minute
Facebook Users YouTube

flickr

6 Billion
Flickr Photos 28 Million
Wikipedia Pages

Ehe New York Times

- “...data a new class of economic asset,
SundayReview

like currency or gold.”
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The Age of Big Data
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Big Learning

How will we
design and implement
parallel learning systems?



A Shift Towards Parallelism

amaZon
webservices™

GPUs Multicore Clusters Clouds Supercomputers

@ Graduate students repeatedly solve the same parallel
design challenges:

¢ Race conditions, distributed state, communication...

¢ The resulting code is:

¢ difficult to maintain, extend, debug...

Avoid these problems by using
high-level abstractions



Solve a huge number of independent subproblems



MapReduce for Data-Parallel ML

Excellent for large data-parallel tasks!

< Data-Parallel

Is there more to

MapReduce . |
Machine Learning
Feature Cross
Extraction Validation ?

Computing Sufficient

e
Statistics



What is this an image of?



5 next to this...
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The Power of
Dependencies

where the value is!



Examples of
Graphs in
Machine Learning



Label a Face and Propagate

"
grandma \

X A0
= 7

LN

‘*“ o
< : 4 ] :
R Y

:';?‘__r

«




Pairwise similarity not enough...
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Propagate Similarities & Co-occurrences
for Accurate Predictions

Xﬂ—-,: , A

CcOo-occurring
faces
further evidence



Collaborative Filtering: Exploiting Dependencies

Wotren
ﬁ;@i@ Women on the Verge of a

g Nervous Breakdown

The Celebration

City of God

Wild Strawberries

La Dolce Vita




Latent Topic Modeling (LDA)

Click to LOOK INSIDE!

Click to LOOK INSIDE!

JOHNNY
APPLESELED




Example Topics Discovered from Wikipedia

partylaw
government

electioncourt

president elected
council general minister

political national members
committee united office federal
member house pariiament vote

public elections democratic held .

sondied™
marriedfamily
King daughterjohn
death william father

born wife royal ireland
irish henry house lord

charles sir prince brother

children england queen duke
thomas years marriage george
earl edward english ==c

SChOOI students

university high college schools
education year program student

yorkcounty

american united

city washington john
texas served virginia
pennsylvania war moved ohio
chicago william carolina north
florida illinois george james died
massachusefts president
named jersey born boston -

seasonteam
game league games

played coach football
record teams baseball field year
second career play basketball
hockey three yards won

album band

songreleased

MUSIC songs single records
recorded rock bands release
live tour video record albums
label group recording

centuryking

enginecar

roman empire greekdesign model cars

bcancientemperorii

kingdom period battle city
time great war ad early reign
kings iii son rule power greacs
army centuries dynasty

SpeCIes iy

birds small long large animals
bird plants genus ; 1

radiOstation

news television

channel broadcast

stations network media tv
broadcasting time format local

sck  program bbe programming live

production built engines
vehicle class models
speed vehicles designed
produced power front system
version type series motor rear

standard gun company
introduced range ford sold i

art museumwork
works artists collection design

arts painting artist gallery
paintings exhibition style fin.

Wararmy military

forces battle force british
command general navy ship
division ships troops corps
service naval regiment
commander infantry attack men
officer i - ts officar

whitered
blackbluecaiied

color will head green gold side
small hand long arms top flag
horse wear silver common light

. dog wood body type large
" yellow

aJe 18 population
income average years
median living 65 males
females households 100 family
peopla families older fown size
city household miles density
american 1

m USiC musical opera

festival orchestra dance
performed jazz plano theatre
performance works



Machine Learning Pipeline

Extract Graph
Features Formation Structured
Machine
Learning
Algorithm
similar belief
: faces ele
images | faces propagation
docs important
. worde shared LDA
movie words :
. side collaborative
ratings e rated filtering

movies

face
labels

doc
topics

movie
recommend.



Parallelizing Machine Learning

Extract Graph
Features Formation Structured

Machine

Learning
Algorithm

Graph Ingress Graph-Structured

mostly data-parallel Computation
graph-parallel



ML Tasks Beyond Data-Parallelism

< Data-Parallel

Map Reduce

Feature Cross
Extraction Validation

Computing Sufficient
Statistics



Example of a
Graph-Parallel
Algorithm



Page Ra N k Depends on rank

of who follows them...

Depends on rank
of who follows her

What's the rank
of this user?

Loops in graph =» Must iterate!



PageRank Iteration

Iterate until convergence:

“My rank is weighted
average of my friends’ ranks”

¢ o is the random reset probability
* Wj; is the prob. transitioning (similarity) from jto i



Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation
b




Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel

Map Reduce Graph-Parallel Abstraction

Feature Cross Graphical Models Semi-Supervised
Belief Pr tion ‘
Computing Sufficient safiati;npjg;ps Label z;oEp&gat'on
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization Triangle Counting



Graph Computation:

Synchronous
V.

Asynchronous



Bulk Synchronous Parallel Model:
Pregel (Giraph) Valiart ‘90

Communicate




Bulk synchronous
parallel model
provably inefficient
for some ML tasks



Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

6 focus here
N
Priority Queue
Smart Scheduling
important
influence

Asynchronous Parallel Model (rather than BSP)

fundamental for efficiency



Asynchronous Belief Propagation

Challenge = Boundaries

Many
Updates

nthti Noisy Image |
Few
Updates

¥

Cumulative Vertex Updates

Algorithm identifies and focuses

on hidden sequential structure

Graphical Model



Runtime in Seconds

10000

8000

6000

4000

2000

BSP ML Problem:
Synchronous Algorithms can be Inefficient

/ Bulk Synchronous (e.g., Pregel)
Theorem:

Asynchronous Splash BP Bulk Synchronous BP

O(#vertices) slower
than Asynchronous BP

—
8

1 2 3 4 5 6 7
Number of CPUs

Efficient parallel
implementation was
painful, painful, painful...

l.phdcomics.com



The Need for a New Abstraction

¢ Need: Asynchronous, Dynamic Parallel Computations

Data-Parallel Graph-Parallel

Map Reduce ( BSP, e.g., Pregel

Carnegie Mellon -

Feature Cross Graphical Models  Semi- Superwsed
Extraction Validation Gibbs Sampling Learning
Belief Propagation ‘
Computing Sufficient VariationpalgOpt. Label IZLOEpI\jlgatlon
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization Triangle Counting



The GraphLab Goals

Know how to
solve ML problem

on 1 machine Efficient

parallel
predictions

R




Graphl ab' Af 1

Carnegie Mellon !



Data Graph

Data associated with vertices and edges

&0

s

Graph: (L

e Social Network

Vertex Data: .
 User profile text
e Current interests estimates

Edge Data: i

 Similarity weights



How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]



Update Functions

User-defined program: applied to
vertex transforms data in scope of vertex

Update function applied (asynchronously)
in parallel until convergence

Many schedulers available to prioritize computation

Dynamic
computation



Ensuring Race-Free Code

How much can computation overlap?




Need for Consistency?

Throughput
(#updates/sec)

No Consistency

Potentially Slower
Convergence of ML




Consistency in Collaborative Filtering

128
64 N
== |nconsistent updates
32 -
<@ Consistent updates

GraphLab guarantees consistent updates

User-tunable consistency levels

trades off parallelism & consistency

0-5 [ [ [ [ |
0 2 4 6 8
Updates Millions

Netflix data, 8 cores



The GraphLab Framework

Graph Based Update Functions
Data Representation User Computation

O———C

Scheduler Consistency Model

oooo>




Alternating Least SVD

Squares Splash Sampler

CotM Bayesian Tensor

L asso Factorization

Belief Propagation

Gra|:gh

arnegie Mellon SV M

PageRank
LDA

Gibbs Sampling
Dynamic Block Gibbs Sampling

K-Means Matrix

...Many others... -
Factorization

Linear Solvers



Never Ending Learner Project (CoEM)

Hadoop 95 Cores 7.5 hrs
Distributed 32 EC2 80 secs
GraphlLab machines

0.3%0 of Hadoop time

2 orders of mag faster =»

2 orders of mag cheaper




Thus far...

GraphLab 1 provided exciting
scaling performance

But...
We couldn’t scale up to

Altavista Webgraph 2002
1.4B vertices, 6.7B edges
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Problem:

Existing distributed graph
computation systems perform
poorly on Natural Graphs



Achilles Heel: ldealized Graph Assumption

Assumed... But, Natural Graphes...

Small degree =»

Easy to partition Many high degree vertices

(power-law degree distribution)
->
Very hard to partition




Power-Law Degree Distribution
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High Degree Vertices are Common

“Social” People Popular Movies
p ¢! i
i Netflix
= -
A N Hotty Poiter
| r
i | Movies [ |
Hyper Parameters Common Words

LDA

Obama




Power-Law Degree Distribution

“Star Like” Motif

President
Obama




Problem:
High Degree Vertices = High
Communication for Distributed Updates

Data transmitted
across network
O(# cut edges)

Natural graphs do not have low-cost balanced cuts
[Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,...) perform poorly
[Abou-Rjeili et al. 06]

Extremely slow and require substantial memory




Random Partitioning

¢ Both GraphlLab 1 and Pregel proposed Random
(hashed) partitioning for Natural Graphs

For p Machines:

10 Machines =2 90% of edges cut
100 Machines = 99% of edges cut!

All data is communicated... Little advantage over MapReduce



N
Graph Lab}

Program
For This

Run on This

Machine 1 Machine 2

-3 4

¢ Split High-Degree vertices

» New Abstraction = Leads to this Split Vertex Strategy



Common Pattern for Update Fncs.

R[i]

GraphLab_PageRank(1i)

R[j]‘gL %”/

/

-

// Compute sum over neighbors

total = ©

foreach( j in in_neighbors(i)):
total = total + R[J] * wy;

Gather Information
About Neighborhood

J

/) Update the PageRank
R[i] = 0.1 + total

Apply Update to Vertex

// Trigger neighbors to run again

if R[i] not converged then Scatter Signal to Neighbors

foreach( j in out _neighbors(i))
signal vertex-program on j

& Modify Edge Data



Many ML Algorithms fit
into GAS Model

graph analytics, inference in graphical
models, matrix factorization,
collaborative filtering, clustering, LDA, ...



Distributed Execution of a GraphLab 2
Vertex-Program

Machine 1 Machine 2

Gather a

y

Apply

Scatter 4 ‘ v

Machine 3 Machine 4 )




Minimizing Communication in GraphlLab 2:
Vertex Cuts

Col..muni.dion ...1ear

inHcr nnod r-a~rhinac

GraphLab 2 includes novel vertex cut algorithms

Provides order of magnitude gains in performance
# mMachines per vertex

Percolation theory suggests Power Law graphs can be split
by removing only a small set of vertices [Albert et al. 2000]

->
Small vertex cuts possible!



N
Graph Lab}
From the Abstraction
to a System



Sync. Engine Async. Engine

Fault Tolerance

MPI/TCP-IP Comms PThreads

Map/Reduce Ingress

Distributed Graph

Boost

Linux Cluster Services (Amazon AWS)




Triangle Counting on Twitter Graph
34.8 Billion Triangles

Hadoop B EELRUET 1[5
[WWW’11] Iz E R LT

64 Machines
1.5 Minutes

|
GraphLab2 |

Why? Wrong Abstraction -

Broadcast O(degree?) messages per Vertex

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11



Topic Modeling (LDA)

¢ English language Wikipedia
e 2.6M Documents, 8.3M Words, 500M Tokens
e Computationally intensive algorithm

Million Tokens Per Second

0 20 40 60 80 100 120 140 160

100 Yahoo! Machines

Smola et al.

Specifically engineered for this task

GraphlLab2




PageRank

SHBrs
Hadoop

Twister

Graphlab

40M Webpages, 1.4 Billion Links

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]



How well does GraphLab scale?

Yahoo Altavista Web Graph (2002):
One of the largest publicly available webgraphs

1.4B Webpages, 6.7 Billion Links

7 seconds per iter.

1B links processed per second

30 lines of user code

| SandiBrldge W
1024 Cores (2048 HT) 4.4 TB RAM




GraphChi: Going small with GraphlLab
R q.

I AN
&Q‘%

Jus

Solve huge problems on
small or embedded Q
devices?

Key: Exploit non-volatile memory

(starting with SSDs and HDs)



GraphChi — disk-based GraphLab

Challenge: i

Random Accesses \

Novel GraphChi solution:
Parallel sliding windows method =
minimizes number of random accesses



Triangle Counting on Twitter Graph

40oM Users  Total: 34.8 Billion Triangles
1.2B Edges

Hadoop

59 Minutes, 1 Mac Mini!
GraphChi |
64 Machines, 1024 Cores

1.5 Minutes
GraphlLab2

Hadoop results from [Suri & Vassilvitskii '11]



Next: Online GraphlLab

Today, batch computation:

But, must continuously make predictions in presence of
changing data (new users, friends, de-friending, ...)

GGraph Lab\



GraphChi: Streaming Graph Updates

Y =

Stream of Twitter Ingest 100,000 While simultaneously

social graph updates graph updates / sec co-m.puting.Pégerank on a Mac
Mini, sustaining throughput of

200K updates/second




N
Graph Lab\
Release 2.1 available now
http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now
http://graphchi.org



GraphChi: Going small with GraphlLab

Kyrola+al OSDI12
N

Jus

Solve huge problems on
small or embedded Q
devices?

Key: Exploit non-volatile memory

(starting with SSDs and HDs)



Naive Graph Disk Layouts

¢ Symmetrized adjacency file with values,

vertos | imneighbors | outneighbors

5 3:2.3,19: 1.3,49: 0.65,... 781:2.3,881:4.2..
\ synchronize -

19 3:1.4 9:12.1, ... T~—35:13 28:2.2, ..

o ... or with file index pointers

5 3: 881, 19: 10092, 49: 20763, ... 781:2.3,881:4.2..

- _ - Random
read read/write
19 3:882,9: 2872, ... 5:1.3,28:2.2, ...




GraphChi — disk-based GraphLab

¢ Fast ©

¢ Solves tasks as large as current
Windows algorithm distributed systems

interval 1 ¢ Minimizes non-sequential disk

Novel Parallel Sliding

dCcesses

¢ Efficient on both SSD and hard-
drive

¢ Parallel, asynchronous
Shard 1 Shard 2 Shard 3 Shard 4 execution




Parallel Sliding Windows Layout

Shard: in-edges for subset of vertices; sorted by source_id

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

Shard 1 Shard 2 Shard 3 Shard 4

in-edges for vertices 1..100
sorted by source _id

Shards small enough to fit in memory; balance size of shards



Parallel Sliding Windows
Execution Load subgraph for vertices 1..100

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

o

S Shard 2 Shard 3 Shard 4

: O

— '_I

v o

U O

L2 5

Y o

U wn

> >

“ O

L

v

L

= 2

b

=

RELEIRE o What about out-edges?
iIn memory Arranged in sequence in other shards!

And sequential writes!



Parallel Sliding Windows
Execution Load subgraph for vertices 101..700

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000
o
S Shard 1 Shard 2 Shard 3 Shard 4
< S, —
v
v O
RS~
T 0
v wn
> >
“ 9
Lo
wn O
v T
> 2
¢
=
Load all in-edges Only O(P?) random reads
In memory

per pass on entire graph




Triangle Counting in Twitter Graph

40oM Users  Total: 34.8 Billion Triangles
1.2B Edges

Hadoop

59 Minutes, 1 Mac Mini!
GraphChi
64 Machines, 1024 Cores

1.5 Minutes
GraphlLab

Hadoop results from [Suri & Vassilvitskii '11]



Apps & Performance

Application Comparison

Pagerank (3 iter.) Twitter-2010 SPARK, 50 machines
(1.5B edges) 8.1 min
Pagerank (100 iter.) Uk-union STANFORD GPS (PREGEL), 30 machines
(3.7B edges) 144 min
WebGraph-Belief- Yahoo-web PeGAsus, 100 machines
Propagation (UKanget al.) (6.7B edges) 22 min
Matrix factorization (ALS)  Netflix movies GRAPHLAB, 8-core machine
(10 iter.) (99M edges) 4.7 min
Triangle counting Twitter-2010 HADOOP, 1636 machines
423 min

Node, comparison results do not include time to transfer the data to cluster, or the time to load the graph from disk.



Goal: Real-Time GraphLab

Today, batch computation:

But, must continuously make predictions in presence of
changing data (new users, friends, de-friending, sensors...)

Data

et

Graph Lab'




GraphChi with Streaming Graphs

¢ Keep edge additions and deletions in-memory cache,
per shard

¢ When cache too large, split shard
¢ Or merge as needed
¢ Resort shard in memory, since small enough

Shard 2
.

Cache



Streaming Graph Updates

Y =

Stream of Twitter Ingest 100,000 While simultaneously

social graph updates graph updates / sec co-m.puting.Pégerank on a Mac
Mini, sustaining throughput of

200K updates/second




Number of edge

GraphChi: Dynamic Graphs Evaluation

x 10°
-g EE 10 Staticgraph
o N -
§ _%) 3 Ingest goal: 100K/s
2 2 ”
2 5
s o
© o 4
2 3 d
e £ 2
- Ingest goal: 200K/s

-

0 2 4 6
Time (hours)

Mac Mini / SSD: streaming of Twitter graph (1.5B edges) from the hard drive
with gapped rate of 100K or 200K edges/sec.
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