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Needless to Say, We Need 
Machine Learning for Big Data 

72 Hours a Minute 
YouTube 28 Million  

Wikipedia Pages 

1 Billion 
Facebook Users 

6 Billion  
Flickr Photos 

“… data a new class of economic asset, 
like currency or gold.” 



How will we 
design and implement  

parallel learning systems? 
 

Big Learning 



A Shift Towards Parallelism 

GPUs Multicore Clusters Clouds Supercomputers 

  ML experts   repeatedly solve the same parallel 
design challenges: 

Race conditions, distributed state, communication…  

The resulting code is: 
difficult to maintain, extend, debug…  

Avoid these problems by using  
high-level abstractions 
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Solve a huge number of independent subproblems 



MapReduce for Data-Parallel ML 

Excellent for large data-parallel tasks! 

Data-Parallel                     Graph-Parallel 

Cross 
Validation 

Feature  
Extraction 

MapReduce 

Computing Sufficient 
Statistics  

Graphical Models 
Gibbs Sampling 

Belief Propagation 
Variational Opt. 

Semi-Supervised  
Learning 

Label Propagation 
CoEM 

Graph Analysis 
PageRank 

Triangle Counting 

Collaborative  
Filtering 

Tensor Factorization 

Is there more to 
Machine Learning 

? 









The Power of 
Dependencies 

 
where the value is! 



Examples of 
Graphs in  

Machine Learning 



Label a Face and Propagate 



Pairwise similarity not enough… 

Not similar enough 
to be sure 



Propagate Similarities & Co-occurrences 
for Accurate Predictions  

similarity 
edges 

co-occurring 
faces 

further evidence 



Collaborative Filtering: Exploiting Dependencies 

City of God 

Wild Strawberries 

The Celebration 

La Dolce Vita 

Women on the Verge of a 
Nervous Breakdown 

What do I  
recommend??? 



Latent Topic Modeling (LDA) 

Cat 

Apple 

Growth 

Hat 

Plant 



Example Topics Discovered from Wikipedia 



Data 

Machine Learning Pipeline 

images 
 

docs 
 

movie  
ratings 

Extract 
Features 

faces 
 

important 
words 

 

side  
info 

Graph 
Formation 

similar 
faces 

 

shared 
words 

 

rated 
movies 

Structured 
Machine 
Learning 
Algorithm 

belief 
propagation 

 

LDA 
 

collaborative 
filtering 

Value 
from 
Data 

face 
labels 

 

doc 
topics 

 

movie 
recommend. 



Data 

Parallelizing Machine Learning 

Extract 
Features 

Graph 
Formation Structured 

Machine 
Learning 
Algorithm 

Value 
from 
Data 

Graph Ingress 
mostly data-parallel 

Graph-Structured 
Computation 

graph-parallel 



ML Tasks Beyond Data-Parallelism  

Data-Parallel                     Graph-Parallel 

Cross 
Validation 

Feature  
Extraction 

Map Reduce 

Computing Sufficient 
Statistics  

Graphical Models 
Gibbs Sampling 

Belief Propagation 
Variational Opt. 

Semi-Supervised  
Learning 

Label Propagation 
CoEM 

Graph Analysis 
PageRank 

Triangle Counting 

Collaborative  
Filtering 

Tensor Factorization 



Example of a 
Graph-Parallel 

Algorithm 



PageRank 

What’s the rank  
of this user? 

Rank? 

Depends on rank  
of who follows her 

Depends on rank  
of who follows them… 

Loops in graph  Must iterate! 



PageRank Iteration 

α is the random reset probability 
wji is the prob. transitioning (similarity) from j to i 

R[i] 

R[j] 
wji Iterate until convergence: 

“My rank is weighted  
average of my friends’ ranks” 



Properties of Graph Parallel Algorithms 

Dependency 
Graph 

Iterative 
Computation 

My Rank 

Friends Rank 

Local 
Updates 



Addressing Graph-Parallel ML 

Data-Parallel                     Graph-Parallel 

Cross 
Validation 

Feature  
Extraction 

Map Reduce 

Computing Sufficient 
Statistics  

Graphical Models 
Gibbs Sampling 

Belief Propagation 
Variational Opt. 

Semi-Supervised  
Learning 

Label Propagation 
CoEM 

Data-Mining 
PageRank 

Triangle Counting 

Collaborative  
Filtering 

Tensor Factorization 

Map Reduce? Graph-Parallel Abstraction 



Graph Computation: 
 

Synchronous  
v. 

Asynchronous 



Barrier 
Bulk Synchronous Parallel Model: 
Pregel (Giraph) 

Compute Communicate 

[Valiant ‘90]  



Bulk synchronous 
parallel model 

provably inefficient 
for some ML tasks  



Analyzing Belief Propagation 

A 

B 

Priority Queue 
Smart Scheduling 

focus here 

[Gonzalez, Low, G. ‘09]  

Asynchronous Parallel Model (rather than BSP)  
fundamental for efficiency 

important 
influence 



Asynchronous Belief Propagation 

Synthetic Noisy Image 

Cumulative Vertex Updates 

Many 
Updates 

Few 
Updates 

Algorithm identifies and focuses  
on hidden sequential structure 

Graphical Model 

Challenge = Boundaries 



BSP ML Problem:  
Synchronous Algorithms can be Inefficient 

Theorem:  
Bulk Synchronous BP 
O(#vertices) slower 

than Asynchronous BP 
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Number of CPUs 

Bulk Synchronous (e.g., Pregel) 

Asynchronous Splash BP 

Efficient parallel  
implementation was  

painful, painful, painful… 



The Need for a New Abstraction 

Data-Parallel                     Graph-Parallel 

Cross 
Validation 

Feature  
Extraction 

Map Reduce 

Computing Sufficient 
Statistics  

Graphical Models 
Gibbs Sampling 

Belief Propagation 
Variational Opt. 

Semi-Supervised  
Learning 

Label Propagation 
CoEM 

Data-Mining 
PageRank 

Triangle Counting 

Collaborative  
Filtering 

Tensor Factorization 

BSP, e.g., Pregel 

Need: Asynchronous, Dynamic Parallel Computations 



The GraphLab Goals 

Efficient 
parallel 

predictions 

Know how to  
solve ML problem  

on 1 machine 





Data Graph 
Data associated with vertices and edges 

Vertex Data: 
• User profile text 
• Current interests estimates 

Edge Data: 
• Similarity weights  

Graph: 
• Social Network 



How do we program  
graph computation? 

“Think like a Vertex.” 
-Malewicz et al. [SIGMOD’10] 



pagerank(i, scope){ 
  // Get Neighborhood data 
  (R[i], wij, R[j]) scope; 
 

   // Update the vertex data 
 
 
 
  // Reschedule Neighbors if needed 
  if R[i] changes then  
    reschedule_neighbors_of(i);  
} 

Update Functions 
User-defined program: applied to  
vertex transforms data in scope of vertex 

Dynamic  
computation 

Update function applied (asynchronously)  
in parallel until convergence 

 
Many schedulers available to prioritize computation 



Ensuring Race-Free Code 
How much can computation overlap? 



Need for Consistency? 

No Consistency 

Higher 
Throughput 

(#updates/sec) 
 

Potentially Slower 
Convergence of ML 



Consistency in Collaborative Filtering 
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Updates Millions 

Dynamic Inconsistent 

Dynamic 

Netflix data, 8 cores 

Consistent updates 

Inconsistent updates 

GraphLab guarantees consistent updates 
 

User-tunable consistency levels 
trades off parallelism & consistency 



The GraphLab Framework 

Scheduler Consistency Model 

Graph Based 
Data Representation 

Update Functions 
User Computation 



Bayesian Tensor  
Factorization 

Gibbs Sampling 
Dynamic Block Gibbs Sampling 

Matrix 
Factorization 

Lasso 

SVM 

Belief Propagation PageRank 

CoEM 

K-Means 

SVD 

LDA 

…Many others… 
Linear Solvers 

Splash Sampler 
Alternating Least  

Squares 



Never Ending Learner Project (CoEM) 

Hadoop 95 Cores 7.5 hrs 

Distributed 
GraphLab 

32 EC2 
machines 

80 secs 

0.3% of Hadoop time 

2 orders of mag faster  
   2 orders of mag cheaper 



GraphLab 1 provided exciting 
scaling performance 

But… 

Thus far… 

We couldn’t scale up to  
Altavista Webgraph 2002 

1.4B vertices, 6.7B edges 



Natural Graphs 

[Image from WikiCommons] 



Problem: 

Existing distributed graph 
computation systems perform 

poorly on Natural Graphs 



Achilles Heel:   Idealized Graph Assumption 

Assumed… But, Natural Graphs… 

Small degree   
Easy to partition Many high degree vertices 

(power-law degree distribution)  
  

Very hard to partition 



Power-Law Degree Distribution 

High-Degree  
Vertices:  

1% vertices adjacent 
to 50% of edges  

N
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AltaVista WebGraph 
1.4B Vertices, 6.6B Edges 

Degree 



High Degree Vertices are Common 

U
se

rs
 

Movies 

Netflix 

“Social” People Popular Movies 
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Words 

LDA 

Common Words 

Obama 



Power-Law Degree Distribution 
“Star Like” Motif 

President 
Obama Followers 



Problem:  
High Degree Vertices  High 
Communication for Distributed Updates 

Y 

Machine 1 Machine 2 

Natural graphs do not have low-cost balanced cuts  
     [Leskovec et al. 08, Lang 04] 
 

Popular partitioning tools (Metis, Chaco,…) perform poorly  
                     [Abou-Rjeili et al. 06] 

Extremely slow and require substantial memory 

Data transmitted 
across network 

O(# cut edges) 



Random Partitioning 
Both GraphLab 1 and Pregel proposed Random 
(hashed) partitioning for Natural Graphs 

Machine 1 Machine 2 

For p Machines: 
 
 
 
 
10 Machines  90% of edges cut 
100 Machines  99% of edges cut! 

All data is communicated… Little advantage over MapReduce 



Machine 1 Machine 2 

Split High-Degree vertices 
New Abstraction  Leads to this Split Vertex Strategy 

Program 
For This 

Run on This 



Gather Information 
About Neighborhood 

Apply Update to Vertex 

Scatter Signal to Neighbors  
& Modify Edge Data 

Common Pattern for Update Fncs. 

GraphLab_PageRank(i)  
  // Compute sum over neighbors 
  total = 0 
  foreach( j in in_neighbors(i)):  
    total = total + R[j] * wji 
 
  // Update the PageRank 
  R[i] = 0.1 + total  
 
  // Trigger neighbors to run again 
  if R[i] not converged then 
    foreach( j in out_neighbors(i))  
      signal vertex-program on j 

R[i] 

R[j] 
wji 



Many ML Algorithms fit 
into GAS Model 

 
graph analytics, inference in graphical 

models, matrix factorization, 
collaborative filtering, clustering, LDA, … 



Machine 2 Machine 1 

Machine 4 Machine 3 

Distributed Execution of a GraphLab 2 
Vertex-Program 

Σ1 Σ2 

Σ3 Σ4 

+            +            +   

Y Y Y Y 

Y’ 

Σ 

Y’ Y’ Y’ Gather 

Apply 

Scatter 

81 



Minimizing Communication in GraphLab 2: 
Vertex Cuts 

Y Communication linear  
in # spanned machines 

Y Y 

A vertex-cut minimizes  
# machines per vertex 

Percolation theory suggests Power Law graphs can be split 
by removing only a small set of vertices [Albert et al. 2000] 

 
Small vertex cuts possible!  

GraphLab 2 includes novel vertex cut algorithms 
 

Provides order of magnitude gains in performance 



 
 

From the Abstraction  
to a System 



Linux Cluster Services (Amazon AWS) 

MPI/TCP-IP Comms PThreads Boost HDFS 

Sync. Engine Async. Engine 
Fault Tolerance Distributed Graph 

Map/Reduce Ingress 

GraphLab Version 2.1 API (C++) 

Graph  
Analytics 

Graphical 
Models 

Computer 
Vision Clustering Topic 

Modeling 
Collaborative 

Filtering 



34.8 Billion Triangles 
Triangle Counting on Twitter Graph 

64 Machines 
1.5 Minutes 

1636 Machines 
423 Minutes 

Hadoop 
[WWW’11] 

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11 

Why? Wrong Abstraction    
      Broadcast O(degree2) messages per Vertex 



Topic Modeling (LDA) 
English language Wikipedia  

2.6M Documents, 8.3M Words, 500M Tokens 

Computationally intensive algorithm 

0 20 40 60 80 100 120 140 160 

Smola et al. 

GraphLab2 

Million Tokens Per Second 

100 Yahoo! Machines 

64 cc2.8xlarge EC2 Nodes 

Specifically engineered for this task 

200 lines of code & 4 human hours 



PageRank 

40M Webpages,  1.4 Billion Links 

GraphLab 

Twister 

Hadoop 
5.5 hrs 

1 hr 

8 min 

$180 

$41 

$12 

Hadoop results from [Kang et al. '11] 
Twister (in-memory MapReduce) [Ekanayake et al. ‘10] 



How well does GraphLab scale? 

Yahoo Altavista Web Graph (2002): 
 One of the largest publicly available webgraphs 

1.4B Webpages,  6.7 Billion Links 

1024 Cores (2048 HT) 4.4 TB RAM 

64 HPC Nodes 

 

7 seconds per iter. 
1B links processed per second 

30 lines of user code 
 



GraphChi: Going small with GraphLab 

Solve huge problems on 
small or embedded 

devices? 

Key: Exploit non-volatile memory  
(starting with SSDs and HDs) 



GraphChi – disk-based GraphLab 

Challenge: 
    Random Accesses 

Novel GraphChi solution: 
    Parallel sliding windows method  
     minimizes number of random accesses 



Triangle Counting on Twitter Graph 
40M Users   
1.2B Edges 

Total: 34.8 Billion Triangles 

Hadoop results from [Suri & Vassilvitskii '11] 

59 Minutes 

64 Machines, 1024 Cores 
1.5 Minutes 

GraphLab2 

GraphChi 

Hadoop 

1636 Machines 
423 Minutes 

59 Minutes, 1 Mac Mini! 



Next: Online GraphLab 
Today, batch computation: 

Predictions 

But, must continuously make predictions in presence of 
changing data  (new users, friends, de-friending, …) 

Data 

Predictions Queries 
Online 



GraphChi: Streaming Graph Updates 

Stream of Twitter 
social graph updates 

Ingest 100,000 
graph updates / sec 

While simultaneously 
computing Pagerank on a Mac 
Mini, sustaining throughput of  

200K updates/second 



Release 2.1 available now 
http://graphlab.org 

Documentation… Code… Tutorials… (more on the way)  

GraphChi 0.1 available now 
http://graphchi.org 



GraphChi: Going small with GraphLab 

Solve huge problems on 
small or embedded 

devices? 

Key: Exploit non-volatile memory  
(starting with SSDs and HDs) 

Kyrola+al OSDI12 



Naive Graph Disk Layouts 

Symmetrized adjacency file with values, 
 
 
vertex in-neighbors out-neighbors 

5 3:2.3, 19: 1.3, 49: 0.65,... 781: 2.3, 881: 4.2.. 

.... 

19 3: 1.4, 9: 12.1, ... 5: 1.3, 28: 2.2, ... 

vertex in-neighbor-ptr out-neighbors 

5 3: 881, 19: 10092, 49: 20763,... 781: 2.3, 881: 4.2.. 

.... 

19 3: 882, 9: 2872, ... 5: 1.3, 28: 2.2, ... 

Random 
write synchronize 

Random 
read/write read 

… or with file index pointers 
 
 

5 19 



GraphChi – disk-based GraphLab 

Novel Parallel Sliding  
Windows algorithm 

Fast  
Solves tasks as large as current 
distributed systems 
Minimizes non-sequential disk 
accesses  

Efficient on both SSD and hard-
drive 

Parallel, asynchronous 
execution 



Parallel Sliding Windows Layout 

Shard 1 Shard 2 Shard 3 Shard 4 

Vertices 
1..100 

Vertices 
101..700 

Vertices 
701..1000 

Vertices 
1001..10000 

Shards small enough to fit in memory; balance size of shards 

Shard: in-edges for subset of vertices; sorted by source_id 
in

-e
dg

es
 fo

r v
er

tic
es

 1
..1

00
 

so
rt

ed
 b

y 
so

ur
ce

_i
d 



Parallel Sliding Windows 
Execution 

Shard 1 

Vertices 
1..100 

Vertices 
101..700 

Vertices 
701..1000 

Vertices 
1001..10000 

in
-e
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es
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Load all in-edges 
in memory  

Load subgraph for vertices 1..100 

What about out-edges?  
      Arranged in sequence in other shards! 
      And sequential writes!  

Shard 2 Shard 3 Shard 4 



Parallel Sliding Windows 
Execution 

Shard 1 

Vertices 
1..100 

Vertices 
101..700 

Vertices 
701..1000 

Vertices 
1001..10000 
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Load all in-edges 
in memory  

Load subgraph for vertices 101..700 

Only O(P2) random reads  
per pass on entire graph 

Shard 2 Shard 3 Shard 4 



Triangle Counting in Twitter Graph 
40M Users   
1.2B Edges 

Total: 34.8 Billion Triangles 

Hadoop results from [Suri & Vassilvitskii '11] 

GraphLab 

GraphChi 

Hadoop 59 Minutes 

64 Machines, 1024 Cores 
1.5 Minutes 

GraphLab 

GraphChi 

Hadoop 

1536 Machines 
423 Minutes 

59 Minutes, 1 Mac Mini! 



Application Graph Comparison GraphChi on Mac 
Mini (SSD) 

Pagerank (3 iter.)   Twitter-2010 
 (1.5B edges) 

SPARK, 50 machines 
8.1 min   

13 min 

Pagerank (100 iter.) Uk-union 
(3.7B edges) 

STANFORD GPS (PREGEL), 30 machines 
144 min 

581 min 

WebGraph-Belief-
Propagation (U Kang et al.) 

Yahoo-web  
(6.7B edges) 

PEGASUS, 100 machines 
22 min 

27 min   

Matrix factorization (ALS) 
(10 iter.) 

Netflix movies 
(99M edges) 

GRAPHLAB, 8-core machine 
4.7 min 

9.8 min 

Triangle counting Twitter-2010 HADOOP, 1636 machines 
423 min 

45 min 

Node, comparison results do not include time to transfer the data to cluster, or the time to load the graph from disk.  

Apps & Performance 



Goal: Real-Time GraphLab 
Today, batch computation: 

Predictions 

But, must continuously make predictions in presence of 
changing data  (new users, friends, de-friending, sensors…) 

Data 

Predictions Queries 
Real-Time 



GraphChi with Streaming Graphs  
Keep edge additions and deletions in-memory cache, 
per shard 
When cache too large, split shard  

Or merge as needed 
Resort shard in memory, since small enough 

Shard 2 

Shard 2 

Cache 

Shard 2a Shard 2b 



Streaming Graph Updates 

Stream of Twitter 
social graph updates 

Ingest 100,000 
graph updates / sec 

While simultaneously 
computing Pagerank on a Mac 
Mini, sustaining throughput of  

200K updates/second 



GraphChi: Dynamic Graphs Evaluation 

Mac Mini / SSD: streaming of Twitter graph (1.5B edges) from the hard drive 
with gapped rate of 100K or 200K edges/sec. 
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