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Application Consolidation 

• Increasing core-counts + system virtualization 
=> consolidation 

• Hypervisors allocate resource (CPU, memory…) 
shares to application-VMs 
▫ Benefits server resource utilization 
▫ Limit and control sharing effects to maintain 

desired and predictable performance 
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Potential Range of Sharing Effects: 
Voldemort 

•  95th percentile response times of Voldemort show unpredictable variation 
across runs. Worst-case degradation is 23% (Run-8). 
•  Some configurations/co-locations better suited. E.g., (Run-5) 
•  What hardware/software methods can help make such resource 
allocations as in Run-5? 
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• Experimental platform: 
▫ Hardware: 32 core Westmere Processor with 4 

NUMA sockets (8 cores per socket), 32G RAM per 
NUMA node, 24MB LLC per socket 
▫ Software: Xen 4.1 + Dom0 running 2.6.32 kernel + 

Guest VMs running Linux 3.0.2 
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• Applications representative of “Cloud-mix”: 
▫ Voldemort server + YCSB workload client: Key-value 

store used at LinkedIn, supports replication and in-
memory backend (Multi-VM application) 
▫ Phoenix Shared Memory MapReduce with Pthreads 

(HPCA’07) 
• Experiment scenarios: 
▫  Single (Baseline) 
▫  4-Apps: Voldemort + 2 Matrix-Mult + 1 WordCount 
▫  7-Apps: Voldemort + 3 Matrix-Mult + 3 WordCount 

• Methodology: Run applications choosing distinct 
startup order for each run (different colocations) 
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Consolidation: Performance Effects 

• Hypervisors limited in ability to provide 
performance isolation 
▫ Application performance depends on resources 

beyond CPU, memory, includes shared resources as 
memory bandwidth, I/O that are not easily 
partitioned using current hardware support 
▫ Application resource requirements are elastic 

• Consolidation => 
▫  arbitrary interference in shared resource shares which 

may have detrimental performance implication 
▫  interference effects are hardware- and workload-

specific -- different application-resource share 
mappings may experience entirely different 
interference effects 
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Virtual Platforms 

• System-level methods to manage application 
resources keeping isolation as a first class resource 
management principal 
▫ Create, allocate and maintain Virtual Platforms 

(VPs) as hypervisor-level resource 
commitments 
▫ Virtual Platform == resources allocated to all VMs 

representing an application/tenant 
▫ Online interference models for shared resource 

points (Caches, MC, IC) 

• Implementation in Xen Hypervisor evaluated with 
enterprise/cloud application mixes 
▫ Less performance variation, improved performance 

predictability 
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Virtual Platform (VP) Architecture  

• Per-application VP monitor 
▫ VP monitors track application 

VMs’ usage of the shared 
resources using black-box 
techniques (hardware 
performance counters) 
▫ How intensively an 

application uses CPU, caches 
and memory bandwidth (MC, 
IC)? 
▫ How sensitive an application 

is to interference at these 
shared resource types? 
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Modeling application resource use intensity 

• Why measure how intensively an application 
uses shared resources? 
▫ Measure of its “contentiousness” at shared 

resource points in system 
• Approximate resource share use 
▫ CPU: CPU utilization 
▫ LLC: Using L2 and L3 miss counters  

    (L2-L3)/L2misses per 1000 instructions 
▫ Memory Bandwidth: L3miss/1000 instructions 
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Modeling application resource sensitivity 

• Why measure sensitivity? 
▫ Measure of “hurt” caused to application due to 

contention at particular resource type 
▫ E.g., A streaming application may be cache-

intensive, not cache-sensitive 
• Measuring sensitivity to contention at memory 

subsystem (Memory Factor (MF)): 
▫ L3/L2 per 1000 instructions: Fraction of L2misses 

served by memory 
▫ Higher MF: Higher sensitivity to memory latency 

and contention 
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Application mix characterization 

• Memory intensity classes (L3misses/1000inst) 
▫ <2 (Pugs) 
▫ >2, <15 (Terriers) 
▫ >15 (Bulldogs) 

• Memory Factor sensitivity classes (L3/L2 per 
1000inst) 
▫ <0.25 
▫ >0.25 , <0.6 
▫ >0.6 
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Memory contention/latency sensitive: Stream, Milc, Voldemort 
Cache-sensitive: Mcf, MatrixMult, Memory-intensive: Stream,Milc 
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State-Transition model of interference 
• VP monitor keeps track of 
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periodically 
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Validating Interference Model 
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• Need to validate that the state-transition model can 
detect potential interference at shared resource 
points  

• Experiment with different application colocation 
scenarios choosing different interference points 
▫  Isolating each interference point 
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Performance degradation due to 
interference 
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Performance degradation explained by 
state-transition model 

•  Mcf: (Cache) State-1 to State-5 with increased MF sensitivity and 
Memory intensity 
•  Milc: (Memory) State-8 application, not much variation at VP-
monitor level, needs to be managed at global level 
•  Voldemort: (Cache + Memory) State-5 to State-8 16 



Virtual Platform (VP) Architecture 

• Global Platform Manager 
▫ Creates and allocates initial 

CPU, Memory resource 
shares 
▫ Creates VP monitor per 

Virtual Platform 
▫ Topology-awareness of VP to 

Platform resources 
(colocated VPs knowledge 
w.r.t LLC, MC, IC) 
▫ Invoked by VP monitor to 

mitigate interference 
▫ Uses software methods to 

improve isolation 
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Mitigating interference 

• Mitigate interference: maintain resource shares 
by reducing congestion at interference point 

• Global Platform Manager uses: 
▫ CPU caps: Indirect control of Memory bandwidth 

use for highly memory-intensive applications 
▫ VCPU migration amongst NUMA nodes 
▫ VM memory ballooning across NUMA nodes 

• Use current application state knowledge to 
choose “better” mitigation action 
▫ E.g., Use VCPU migration + Memory ballooning 

for MF>0.6 

18 



Evaluation 

• Application mixes 
▫ Stream-SPEC (3 Stream + 2 Milc + 2 Mcf + 2 

Lbm) 
▫ Voldemort-MapReduce (1 Voldemort + 3 Matrix-

Mult + 3 Wordcount) 
▫ StreamingServer-MapReduce (1 StreamingServer 

+ 3 MatrixMult + 3 Wordcount) 
• 4-VCPU VMs + 4G Memory, no CPU sharing, 

prefetching disabled 
• Why disabled Prefetching? 
▫ No software control 
▫ Hard to quantify use of memory bandwidth per 

application using performance counters 
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Experiment Methodology 

• Baseline-Xen: Each application-mix executed in 
different startup order to remove colocation bias 
▫ Observe best performance and normalize other 

performance values to this case 
• VP-Xen: Similar runs with VP-enabled Xen 
▫ Performance normalized to best performance in 

Baseline-Xen case  

20 



Voldemort-Mapreduce 

•  Voldemort has higher MF sensitivity than Matrix-Mult and 
Wordcount 
•  Voldemort worst-case times improved almost 3 times when 
contention caused by Matrix-Mult is mitigated using VP methods 
•  ~8% overhead in moving applications to “good” configuration (as 
of the baseline) 21 



• Current implementation – centralized platform 
manager and per-VP (per-application) platform 
monitor 

• However, need for scale, and thermal and power 
constraints, lead to platform designs with 
▫  increase in corecounts, complex memory 

hierarchies…  
▫  tile based design (e.g., SCC) 
▫ special(ized) engines (e.g., asymmetric or 

heterogeneous cores and accelerators), including 
software-based specialization (e.g., run RT-
scheduler on subset of cores)  

Platform Manager Revisited 



• Resource Islands – resource sets under control 
of independent managers 
▫ E.g., multiple/different CPU schedulers for sets of 

cores; different runtime/scheduler for graphics or 
communication cores  

• Applications – Virtual Platforms – are overlayed 
across islands 

• Coordination mechanisms to advise island 
managers to adjust resource allocations or, if 
possible, to trade resources across islands   

Islands of Resources 



Need for island coordination 

Islands must coordinate to trade resources to meet 
elastic application requirements. 



Pipelined Web application: RUBiS 



Thank you. Questions? 
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