Virtual Platforms: Hypervisor-level

1DDQ or Increased Consolidation
e — A —— e e

Priyanka Tembey
Ada Gavrilovska
Karsten Schwan

http://www.istc-cc.cmu.edu/

Intel Science & Technology
Center for Cloud Computing

m h--“

 Increasing core-counts + system virtualization
=> consolidation

« Hypervisors allocate resource (CPU, memory...)
shares to application-VMs
= Benefits server resource utilization

= Limit and control sharing effects to maintain
desired and predictable performance

v' = ! !! !! —-
15 -

Voldemort

'Single E==—=1
4 Apps E2200
168 | 7 Apps B
— 148 | .
e
e
8
b5 128 -1
=
[l
)
2
S 1@e | .] 2 =
Q. 3 : .
“ 3 : 2
0 . - :
oc ; 1K
@ 86 |- . 1F 1
— E - <.
i 3 41 E
- 3 : :
= 3 A E
8 3 A K
e 60 |- ; 11 7
[T] : - 2
[-T8 E 3 :
=5 : 1
ﬁ 48 E 1 -1
=] ; 1K
20 | -
a 3 % <

- oy o - Tx] w ~ o > -

1 1 1 1 1 [] 1] 1 —

c c c = 1= c = = = 1

= =] = S = = = = = =

o o o o (- o o o (- 2

VYoldenort Runs

& 95t percentile response times of Voldemort show unpredictable variation)
across runs. Worst-case degradation is 23% (Run-8).

« Some configurations/co-locations better suited. E.g., (Run-5)

 What hardware/software methods can help make such resource
allocations as in Run-5?

_ J

m

Voldemort

« Experimental platform:
» Hardware: 32 core Westmere Processor with 4
NUMA sockets (8 cores per socket), 32G RAM per
NUMA node, 24MB LLC per socket

= Software: Xen 4.1 + Domo running 2.6.32 kernel +
Guest VMs running Linux 3.0.2

m

Voldemort

 Applications representative of “Cloud-mix”:

= Voldemort server + YCSB workload client: Key-value
store used at LinkedIn, supports replication and in-
memory backend (Multi-VM application)

= Phoenix Shared Memory MapReduce with Pthreads
(HPCA’07)

« Experiment scenarios:
= Single (Baseline)
s 4-Apps: Voldemort + 2 Matrix-Mult + 1 WordCount
= 7-Apps: Voldemort + 3 Matrix-Mult + 3 WordCount

« Methodology: Run applications choosing distinct
startup order for each run (different colocations)

« Hypervisors limited in ability to provide
performance isolation
= Application performance depends on resources
beyond CPU, memory, includes shared resources as
memory bandwidth, I/O that are not easily
partitioned using current hardware support
= Application resource requirements are elastic
 Consolidation =>

= arbitrary interference in shared resource shares which
may have detrimental performance implication

= interference effects are hardware- and workload-
specific -- different application-resource share
mappings may experience entirely different
interference effects

 System-level methods to manage application

resources keeping isolation as a first class resource

management principal

= Create, allocate and maintain Virtual Platforms
(VPs) as hypervisor-level resource
commitments

= Virtual Platform == resources allocated to all VMs
representing an application/tenant

= Online interference models for shared resource
points (Caches, MC, IC)

« Implementation in Xen Hypervisor evaluated with
enterprise/cloud application mixes
= Less performance variation, improved performance
predictability

- 4 -
m

 Per-application VP monitor

= VP monitors track application
VMs’ usage of the shared
resources using black-box
techniques (hardware
performance counters)

= How intensively an
application uses CPU, caches
and memory bandwidth (MC,
IC)?

= How sensttive an application
is to interference at these
shared resource types?

Privileged Domain

Global Platform Manager
Global mgmt Global

state Decision ctrl

Manadement
act ns

[VPM 1) [vpm z] [VPM 3]| [VPM a

Performance Moni tpr n& API

Application Overlays:
Application level properties
J . “
\ \ \ V \

[Xen Hypervisor (CPU scheduler and VM Memory Manager)

A
VPM State

L)

Virtual Platforms - CPU and Memory Resource shares

« Why measure how intensively an application
uses shared resources?
= Measure of its “contentiousness” at shared
resource points in system
« Approximate resource share use
= CPU: CPU utilization
= LLC: Using L2 and L3 miss counters

(L2-L3)/L2misses per 1000 instructions
s Memory Bandwidth: L3miss/1000 instructions

« Why measure sensitivity?

» Measure of “hurt” caused to application due to
contention at particular resource type

» E.g., A streaming application may be cache-
intensive, not cache-sensitive
« Measuring sensitivity to contention at memory
subsystem (Memory Factor (MF)):

= L.3/L2 per 1000 instructions: Fraction of L2misses
served by memory

» Higher MF: Higher sensitivity to memory latency
and contention

m

« Memory intensity classes (L3misses/1000inst)
o <2 (Pugs)
o >2, <15 (Terriers)
= >15 (Bulldogs)
« Memory Factor sensitivity classes (L3/L2 per
10001nst)
= <0.25
° >0.25, <0.6
° >0.6

Jsu1 0001 4od ZJ/g|

0.8
0.6
04

0.2
0

L2misses /1000 inst E==——3

L3misses /1000 inst

e e e e e e e e e e e e e e e e e e

PO IPI Y N P NN PN TN NP N N N N N NP I NN P N NN N (NN NI B R R A A .

00000000000 00000000000000000000
QM ONOWTM N0 NN OTMN™ONO MO TONT™
MOANNNNANNNANNN == T

Jsul 000 Jod sassiw-ayaen

milc VoldemorMatrixMult

mecf

Stream

Application

|

Milc

: Stream,

1ve

itive: Stream, Milc, Voldemort
tens

=

o

(o}

=

(D]
mM

=
m.m
3 =
S =
~IR3)
OMM.

Qo
Q »
(S =
> 7
S
g =
0 g
> O

A & -

« VP monitor keeps track of
“MF sensitivity and
Memory Intensity states”
periodically
= A transition to higher MF

sensitivity state: Possible
LLC interference,

VP monitor alerts Global
Platform Manager

» Transition down: LLC
interference

= Transition right: Higher
memory intensity

= Special case (State-8):
Monitored by Global
Platform Manager

Possible Interference at

N Needto _ _ _
_MC and I po_lnts limit shares >
increases to right:
MF <0.25 MF < 0.25 MF < 0.25
and and - _ and
L3: Pug L3: Terrier L3: Bulldog
e.g.: mcf e.g.: Mmult

A | S

Interference at

Cache point; @

sensiud ' (0.25<MF<0.6 0.25 <MF <0.6 0.25 <MF <0.6
- and and and
Increases :

downwards: L3: Pug L3: Terrier L3: Bulldog

e.g.: Voldemort

I —

—
Need to

isolate shares

State - 8

MF > 0.6 ! MF > 0.6 MF > 0.6
and - > and and
L3: Pug : L3: Terrier L3: Bulldog
e.g.: Stream, Milc
— —— e |

Higher priority states:
"Threat" to and "Victim" of interference

..

O@ 06| O OO

o) (| Ca (||)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Interference points: Interference points: Running Single- Interference points:
Cache, MC MC on Remote node Cache, MC, IC

(Remote Latency)

« Need to validate that the state-transition model can
detect potential interference at shared resource
points

« Experiment with different application colocation
scenarios choosing different interference points
= Isolating each interference point

erence

-

terf

n

Voldemort MatrixMult

milc

Stream

vd
\ Vs /2 7
(OS] QO
=S=09%0
s EE
5 O m
S 24
gl
c +
& 9
s
+
@
L
Q
']
(@)
Vi,
VA A S A S A A A
o o o o o o o
w Tp) <t m N -

(o4,) uonepelfiag asuewlouad

mcf

Application

state-transition mode

L3misses / 1000inst

60 1
Single Single =1
Cache+Mc] 09 i] Cache+MC R
MC ’ MC mmmm
50 ¢ Single-Remote ——— o 08 | Single-Remote =—=
Cache+MC+|C+Remote —= 2 ’ 4 he+tMC+IC+Remote ——=
= _
o 07 ¢
40 | =
2 06 |
7]
_ ['}]
30 a2 05t
£
3 04t
20 | o
] g 03 }
&
4 02t
10
0.1 H
mcf milc Voldemort Matrixmult mcf milc Voldemort Matrixmult
Application Application

-

* Mcf: (Cache) State-1 to State-5 with increased MF sensitivity and

Memory intensity

~

» Milc: (Memory) State-8 application, not much variation at VP-

monitor level, needs to be managed at global level

* Voldemort: (Cache + Memory) State-5 to State-8

m

 Global Platform Manager
o Creates and allocates initial

CPU, Memory resource eimovonn
shares {Le.ff:,::’:::::'”"‘”t:‘::;.}

L)

m} Creates VP monitor per VPMAState Maa:ée:;e nt Appli cato Ie eI pr oPert es
Vi I'tll al Plath rm [VPM 1) [vpm 2] [VPM 3] l [VPM 4 . “
Performance Moni tpr in API)

> Topology-awareness of VP to ==

Xen Hypervisor (CPU scheduler and VM Memory Manager)

Platform resources e e R

(colocated VPs knowledge | IR \

w.r.t LLC, MC, IC) g DQQUUMI
= Invoked by VP monitor to | OD []D - |

mitigate interference

= Uses software methods to
improve isolation

B WY,

« Mitigate interference: maintain resource shares
by reducing congestion at interference point
 Global Platform Manager uses:

s CPU caps: Indirect control of Memory bandwidth
use for highly memory-intensive applications

= VCPU migration amongst NUMA nodes

» VM memory ballooning across NUMA nodes
» Use current application state knowledge to

choose “better” mitigation action

= E.g., Use VCPU migration + Memory ballooning
for MF>0.6

m B . R, L

 Application mixes

= Stream-SPEC (3 Stream + 2 Milc + 2 Mcf + 2
Lbm)

= Voldemort-MapReduce (1 Voldemort + 3 Matrix-
Mult + 3 Wordcount)

= StreamingServer-MapReduce (1 StreamingServer
+ 3 MatrixMult + 3 Wordcount)

e 4-VCPU VMs + 4G Memory, no CPU sharing,
prefetching disabled

« Why disabled Prefetching?
> No software control

» Hard to quantify use of memory bandwidth per
application using performance counters

m h--“

 Baseline-Xen: Each application-mix executed in
different startup order to remove colocation bias

= Observe best performance and normalize other
performance values to this case

e VP-Xen: Similar runs with VP-enabled Xen

= Performance normalized to best performance in
Baseline-Xen case

35

Baseline-Xen i=

30 | VP =3 |

25

15

10

| -
o
=
= -
i
[
a
a 20 -
=
a
o |
-]
a
N
£ I + + = g |
S = | '
= 5 L _
(o}
‘g - N o2 i ~ px
= = = = c c
s = = = = 3 3
= = = = = = =
© © © © S S
= = = = = =

X
=)
X
()
=
0
=
=
(o
&
=)
Q

(‘ Voldemort has ngHeI' MF sensﬁwﬁ? th M

Wordcount
* Voldemort worst-case times improved almost 3 times when
contention caused by Matrix-Mult is mitigated using VP methods

+ ~8% overhead in moving applications to “good” configuration (as
\of the baseline)

s

Al A st

 Current implementation — centralized platform

manager and per-VP (per-application) platform
monitor

« However, need for scale, and thermal and power
constraints, lead to platform designs with

s increase in corecounts, complex memory
hierarchies...

= tile based design (e.g., SCC)
= special(ized) engines (e.g., asymmetric or
heterogeneous cores and accelerators), including

software-based specialization (e.g., run RT-
scheduler on subset of cores)

el Aol

« Resource Islands — resource sets under control
of independent managers
= E.g., multiple/different CPU schedulers for sets of
cores; different runtime/scheduler for graphics or
communication cores
 Applications — Virtual Platforms — are overlayed
across islands

e Coordination mechanisms to advise island

managers to adjust resource allocations or, if
possible, to trade resources across islands

Time(min)

|

ra

! 7 T T v
Molslands EEEE3 : BS-64a ——3
| BS-64b
HHKHRHHK LR Z
Islands le ::: Fa-99 o5
L Inturfe\slands PR
o~ KSR
0
1% 2
RIS
l PSS
2 % Sk <k g
514 ool SN
58 F' ’:’ Frey 3 .”’ Ty \ S
: . SRS NN B e, I
5 N SO | S O | s R \
N R <% SIEEIRN
- <o <o
Povoy | 5 | N bove, | s
\ = Nl N \
\ i 2 ‘:0 T, ’:’ Ty R
N 2 INEE N
\ ’:’ 3252 \ :’:’ 253 \ 25 \
K2 P2 \
\ 11 oov | i S s
N SN BN
\ SEN BN N
.3 e =
- NoIslands Islands IntuneIslands
Underloaded Cwerloaded

Islands must coordinate to trade resources to meet
elastic application requirements.

(%) suted houajer 3aY

m ® ® ® ®
- ® 7] T N ®
===+ Wa]IJ9)ST3aYy
B¢
U aWnoqy
| 4 o o
m m w ¥ WJo{ua a
ﬁRRz JHIITT=S
5 3 a
¢ g T12S
R
o h quaudo)Ing
L
W
>
i o
o
1
¢
- -1
")
=]
o

) pTaang
YnypTaind

) noyhng
WaJINATH

: 3aysuajryoueag
3ayurjegasnolg

r|||||||||_ 3ayasnoJag
.//...!rarr

JeJsuHajIyaJeag

je33sno.g

|

asnoug

J3)sT3aYy

8860
7000
60060
50060
46800
30060
2000
1060

a

(29suW) SauT] asuodsay jyeay

Thank you. Questions?

% Georgia
cercs Tech M

