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 Increasing core-counts + system virtualization
=> consolidation

« Hypervisors allocate resource (CPU, memory...)
shares to application-VMs
= Benefits server resource utilization

= Limit and control sharing effects to maintain
desired and predictable performance
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VYoldenort Runs

& 95t percentile response times of Voldemort show unpredictable variation )
across runs. Worst-case degradation is 23% (Run-8).

« Some configurations/co-locations better suited. E.g., (Run-5)

 What hardware/software methods can help make such resource
allocations as in Run-5?
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« Experimental platform:
» Hardware: 32 core Westmere Processor with 4
NUMA sockets (8 cores per socket), 32G RAM per
NUMA node, 24MB LLC per socket

= Software: Xen 4.1 + Domo running 2.6.32 kernel +
Guest VMs running Linux 3.0.2
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 Applications representative of “Cloud-mix”:

= Voldemort server + YCSB workload client: Key-value
store used at LinkedIn, supports replication and in-
memory backend (Multi-VM application)

= Phoenix Shared Memory MapReduce with Pthreads
(HPCA’07)

« Experiment scenarios:
= Single (Baseline)
s 4-Apps: Voldemort + 2 Matrix-Mult + 1 WordCount
= 7-Apps: Voldemort + 3 Matrix-Mult + 3 WordCount

« Methodology: Run applications choosing distinct
startup order for each run (different colocations)




« Hypervisors limited in ability to provide
performance isolation
= Application performance depends on resources
beyond CPU, memory, includes shared resources as
memory bandwidth, I/O that are not easily
partitioned using current hardware support
= Application resource requirements are elastic
 Consolidation =>

= arbitrary interference in shared resource shares which
may have detrimental performance implication

= interference effects are hardware- and workload-
specific -- different application-resource share
mappings may experience entirely different
interference effects



 System-level methods to manage application

resources keeping isolation as a first class resource

management principal

= Create, allocate and maintain Virtual Platforms
(VPs) as hypervisor-level resource
commitments

= Virtual Platform == resources allocated to all VMs
representing an application/tenant

= Online interference models for shared resource
points (Caches, MC, IC)

« Implementation in Xen Hypervisor evaluated with
enterprise/cloud application mixes
= Less performance variation, improved performance
predictability
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 Per-application VP monitor

= VP monitors track application
VMs’ usage of the shared
resources using black-box
techniques (hardware
performance counters)

= How intensively an
application uses CPU, caches
and memory bandwidth (MC,
IC)?

= How sensttive an application
is to interference at these
shared resource types?

Privileged Domain

Global Platform Manager
Global mgmt Global

state Decision ctrl

Manadement
act ns

[VPM 1) [vpm z] [VPM 3]| [VPM a

Performance Moni tpr n& API

Application Overlays:
Application level properties
J . “
\ \ \ V \

[ Xen Hypervisor (CPU scheduler and VM Memory Manager)

A
VPM State

L)

Virtual Platforms - CPU and Memory Resource shares




« Why measure how intensively an application
uses shared resources?
= Measure of its “contentiousness” at shared
resource points in system
« Approximate resource share use
= CPU: CPU utilization
= LLC: Using L2 and L3 miss counters

(L2-L3)/L2misses per 1000 instructions
s Memory Bandwidth: L3miss/1000 instructions



« Why measure sensitivity?

» Measure of “hurt” caused to application due to
contention at particular resource type

» E.g., A streaming application may be cache-
intensive, not cache-sensitive
« Measuring sensitivity to contention at memory
subsystem (Memory Factor (MF)):

= L.3/L2 per 1000 instructions: Fraction of L2misses
served by memory

» Higher MF: Higher sensitivity to memory latency
and contention
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« Memory intensity classes (L3misses/1000inst)
o <2 (Pugs)
o >2, <15 (Terriers)
= >15 (Bulldogs)
« Memory Factor sensitivity classes (L3/L2 per
10001nst)
= <0.25
° >0.25, <0.6
° >0.6
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« VP monitor keeps track of
“MF sensitivity and
Memory Intensity states”
periodically
= A transition to higher MF

sensitivity state: Possible
LLC interference,

VP monitor alerts Global
Platform Manager

» Transition down: LLC
interference

= Transition right: Higher
memory intensity

= Special case (State-8):
Monitored by Global
Platform Manager

Possible Interference at

N Needto _ _ _
_MC and I po_lnts limit shares >
increases to right:
MF <0.25 MF < 0.25 MF < 0.25
and and - _ and
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Higher priority states:
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
Interference points: Interference points: Running Single- Interference points:
Cache, MC MC on Remote node Cache, MC, IC

(Remote Latency)

« Need to validate that the state-transition model can
detect potential interference at shared resource
points

« Experiment with different application colocation
scenarios choosing different interference points
= Isolating each interference point
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state-transition mode
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* Mcf: (Cache) State-1 to State-5 with increased MF sensitivity and

Memory intensity

~

» Milc: (Memory) State-8 application, not much variation at VP-

monitor level, needs to be managed at global level

* Voldemort: (Cache + Memory) State-5 to State-8
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 Global Platform Manager
o Creates and allocates initial

CPU, Memory resource  eimovonn
shares {Le.ff:,::’:::::'”"‘”t:‘::;.}

L)

m} Creates VP monitor per VPMAState Maa:ée:;e nt Appli cato Ie eI pr oPert es
Vi I'tll al Plath rm [VPM 1) [vpm 2] [VPM 3] l [VPM 4 . “
Performance Moni tpr in API )

> Topology-awareness of VP to ==

Xen Hypervisor (CPU scheduler and VM Memory Manager)

Platform resources e e R

(colocated VPs knowledge | IR \

w.r.t LLC, MC, IC) g DQQUUMI
= Invoked by VP monitor to | OD []D - |

mitigate interference

= Uses software methods to
improve isolation
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« Mitigate interference: maintain resource shares
by reducing congestion at interference point
 Global Platform Manager uses:

s CPU caps: Indirect control of Memory bandwidth
use for highly memory-intensive applications

= VCPU migration amongst NUMA nodes

» VM memory ballooning across NUMA nodes
» Use current application state knowledge to

choose “better” mitigation action

= E.g., Use VCPU migration + Memory ballooning
for MF>0.6



m B . R, L

 Application mixes

= Stream-SPEC (3 Stream + 2 Milc + 2 Mcf + 2
Lbm)

= Voldemort-MapReduce (1 Voldemort + 3 Matrix-
Mult + 3 Wordcount)

= StreamingServer-MapReduce (1 StreamingServer
+ 3 MatrixMult + 3 Wordcount)

e 4-VCPU VMs + 4G Memory, no CPU sharing,
prefetching disabled

« Why disabled Prefetching?
> No software control

» Hard to quantify use of memory bandwidth per
application using performance counters
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 Baseline-Xen: Each application-mix executed in
different startup order to remove colocation bias

= Observe best performance and normalize other
performance values to this case

e VP-Xen: Similar runs with VP-enabled Xen

= Performance normalized to best performance in
Baseline-Xen case
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* Voldemort worst-case times improved almost 3 times when
contention caused by Matrix-Mult is mitigated using VP methods

+ ~8% overhead in moving applications to “good” configuration (as
\of the baseline)
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 Current implementation — centralized platform

manager and per-VP (per-application) platform
monitor

« However, need for scale, and thermal and power
constraints, lead to platform designs with

s increase in corecounts, complex memory
hierarchies...

= tile based design (e.g., SCC)
= special(ized) engines (e.g., asymmetric or
heterogeneous cores and accelerators), including

software-based specialization (e.g., run RT-
scheduler on subset of cores)
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« Resource Islands — resource sets under control
of independent managers
= E.g., multiple/different CPU schedulers for sets of
cores; different runtime/scheduler for graphics or
communication cores
 Applications — Virtual Platforms — are overlayed
across islands

e Coordination mechanisms to advise island

managers to adjust resource allocations or, if
possible, to trade resources across islands
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Islands must coordinate to trade resources to meet
elastic application requirements.
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Thank you. Questions?

% Georgia
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