
http://www.istc-cc.cmu.edu/

Virtual Pla*orms: Hypervisor‐level
Support for Increased Consolida<on

Priyanka Tembey
Ada Gavrilovska
Karsten Schwan

Application Consolidation

• Increasing core-counts + system virtualization
=> consolidation

• Hypervisors allocate resource (CPU, memory…)
shares to application-VMs
▫ Benefits server resource utilization
▫ Limit and control sharing effects to maintain

desired and predictable performance

2

Potential Range of Sharing Effects:
Voldemort

•  95th percentile response times of Voldemort show unpredictable variation
across runs. Worst-case degradation is 23% (Run-8).
•  Some configurations/co-locations better suited. E.g., (Run-5)
•  What hardware/software methods can help make such resource
allocations as in Run-5?

3

• Experimental platform:
▫ Hardware: 32 core Westmere Processor with 4

NUMA sockets (8 cores per socket), 32G RAM per
NUMA node, 24MB LLC per socket
▫ Software: Xen 4.1 + Dom0 running 2.6.32 kernel +

Guest VMs running Linux 3.0.2

4

Potential Range of Sharing Effects:
Voldemort

• Applications representative of “Cloud-mix”:
▫ Voldemort server + YCSB workload client: Key-value

store used at LinkedIn, supports replication and in-
memory backend (Multi-VM application)
▫ Phoenix Shared Memory MapReduce with Pthreads

(HPCA’07)
• Experiment scenarios:
▫  Single (Baseline)
▫  4-Apps: Voldemort + 2 Matrix-Mult + 1 WordCount
▫  7-Apps: Voldemort + 3 Matrix-Mult + 3 WordCount

• Methodology: Run applications choosing distinct
startup order for each run (different colocations)

5

Potential Range of Sharing Effects:
Voldemort

Consolidation: Performance Effects

• Hypervisors limited in ability to provide
performance isolation
▫ Application performance depends on resources

beyond CPU, memory, includes shared resources as
memory bandwidth, I/O that are not easily
partitioned using current hardware support
▫ Application resource requirements are elastic

• Consolidation =>
▫  arbitrary interference in shared resource shares which

may have detrimental performance implication
▫  interference effects are hardware- and workload-

specific -- different application-resource share
mappings may experience entirely different
interference effects

6

Virtual Platforms

• System-level methods to manage application
resources keeping isolation as a first class resource
management principal
▫ Create, allocate and maintain Virtual Platforms

(VPs) as hypervisor-level resource
commitments
▫ Virtual Platform == resources allocated to all VMs

representing an application/tenant
▫ Online interference models for shared resource

points (Caches, MC, IC)

• Implementation in Xen Hypervisor evaluated with
enterprise/cloud application mixes
▫ Less performance variation, improved performance

predictability
7

Virtual Platform (VP) Architecture

• Per-application VP monitor
▫ VP monitors track application

VMs’ usage of the shared
resources using black-box
techniques (hardware
performance counters)
▫ How intensively an

application uses CPU, caches
and memory bandwidth (MC,
IC)?
▫ How sensitive an application

is to interference at these
shared resource types?

8

M
CM

C

Node
Memory

Node
Memory

IC

VM
1.1

VM
1.2

VM
2

VM
3

VM
4

Virtual Platforms - CPU and Memory Resource shares

Application Overlays:
Application level properties

Performance Monitoring API

Privileged Domain

Xen Hypervisor (CPU scheduler and VM Memory Manager)

VPM-3VPM-2 VPM-4VPM-1

Global Platform Manager

Global mgmt
state

Global
Decision ctrl

Management
actions

VPM State

Modeling application resource use intensity

• Why measure how intensively an application
uses shared resources?
▫ Measure of its “contentiousness” at shared

resource points in system
• Approximate resource share use
▫ CPU: CPU utilization
▫ LLC: Using L2 and L3 miss counters

 (L2-L3)/L2misses per 1000 instructions
▫ Memory Bandwidth: L3miss/1000 instructions

9

Modeling application resource sensitivity

• Why measure sensitivity?
▫ Measure of “hurt” caused to application due to

contention at particular resource type
▫ E.g., A streaming application may be cache-

intensive, not cache-sensitive
• Measuring sensitivity to contention at memory

subsystem (Memory Factor (MF)):
▫ L3/L2 per 1000 instructions: Fraction of L2misses

served by memory
▫ Higher MF: Higher sensitivity to memory latency

and contention

10

Application mix characterization

• Memory intensity classes (L3misses/1000inst)
▫ <2 (Pugs)
▫ >2, <15 (Terriers)
▫ >15 (Bulldogs)

• Memory Factor sensitivity classes (L3/L2 per
1000inst)
▫ <0.25
▫ >0.25 , <0.6
▫ >0.6

11

Memory contention/latency sensitive: Stream, Milc, Voldemort
Cache-sensitive: Mcf, MatrixMult, Memory-intensive: Stream,Milc

12

Application mix characterization

MF < 0.25
and

L3: Terrier
e.g.: mcf

State - 1

MF < 0.25
and

L3: Bulldog
e.g.: Mmult

State - 2

MF < 0.25
and

L3: Pug

State - 0

0.25 < MF < 0.6
and

L3: Terrier

State - 4

0.25 < MF < 0.6
and

L3: Bulldog
e.g.: Voldemort

State - 5

0.25 < MF < 0.6
and

L3: Pug

State - 3

MF > 0.6
and

L3: Terrier

State - 7

MF > 0.6
and

L3: Bulldog
e.g.: Stream, Milc

State - 8

MF > 0.6
and

L3: Pug

State - 6

Interference at
Cache point;
sensitivity to

MC,IC
increases

downwards:

Need to
isolate shares

Possible Interference at
MC and IC points
increases to right:

Need to
limit shares

Higher priority states:
"Threat" to and "Victim" of interference

State-Transition model of interference
• VP monitor keeps track of

“MF sensitivity and
Memory Intensity states”
periodically
▫ A transition to higher MF

sensitivity state: Possible
LLC interference,
 VP monitor alerts Global

Platform Manager
▫ Transition down: LLC

interference
▫ Transition right: Higher

memory intensity
▫ Special case (State-8):

Monitored by Global
Platform Manager 13

Validating Interference Model

P Q

P Q

P Q

P Q

P Q

P Q

Scenario 1
Interference points:

Cache, MC

Scenario 2
Interference points:

MC

Scenario 4
Interference points:

Cache, MC, IC

Scenario 3
Running Single-
on Remote node

(Remote Latency)

P

P

• Need to validate that the state-transition model can
detect potential interference at shared resource
points

• Experiment with different application colocation
scenarios choosing different interference points
▫  Isolating each interference point

14

Performance degradation due to
interference

15

Performance degradation explained by
state-transition model

•  Mcf: (Cache) State-1 to State-5 with increased MF sensitivity and
Memory intensity
•  Milc: (Memory) State-8 application, not much variation at VP-
monitor level, needs to be managed at global level
•  Voldemort: (Cache + Memory) State-5 to State-8 16

Virtual Platform (VP) Architecture

• Global Platform Manager
▫ Creates and allocates initial

CPU, Memory resource
shares
▫ Creates VP monitor per

Virtual Platform
▫ Topology-awareness of VP to

Platform resources
(colocated VPs knowledge
w.r.t LLC, MC, IC)
▫ Invoked by VP monitor to

mitigate interference
▫ Uses software methods to

improve isolation
17

M
CM

C

Node
Memory

Node
Memory

IC

VM
1.1

VM
1.2

VM
2

VM
3

VM
4

Virtual Platforms - CPU and Memory Resource shares

Application Overlays:
Application level properties

Performance Monitoring API

Privileged Domain

Xen Hypervisor (CPU scheduler and VM Memory Manager)

VPM-3VPM-2 VPM-4VPM-1

Global Platform Manager

Global mgmt
state

Global
Decision ctrl

Management
actions

VPM State

Mitigating interference

• Mitigate interference: maintain resource shares
by reducing congestion at interference point

• Global Platform Manager uses:
▫ CPU caps: Indirect control of Memory bandwidth

use for highly memory-intensive applications
▫ VCPU migration amongst NUMA nodes
▫ VM memory ballooning across NUMA nodes

• Use current application state knowledge to
choose “better” mitigation action
▫ E.g., Use VCPU migration + Memory ballooning

for MF>0.6

18

Evaluation

• Application mixes
▫ Stream-SPEC (3 Stream + 2 Milc + 2 Mcf + 2

Lbm)
▫ Voldemort-MapReduce (1 Voldemort + 3 Matrix-

Mult + 3 Wordcount)
▫ StreamingServer-MapReduce (1 StreamingServer

+ 3 MatrixMult + 3 Wordcount)
• 4-VCPU VMs + 4G Memory, no CPU sharing,

prefetching disabled
• Why disabled Prefetching?
▫ No software control
▫ Hard to quantify use of memory bandwidth per

application using performance counters

19

Experiment Methodology

• Baseline-Xen: Each application-mix executed in
different startup order to remove colocation bias
▫ Observe best performance and normalize other

performance values to this case
• VP-Xen: Similar runs with VP-enabled Xen
▫ Performance normalized to best performance in

Baseline-Xen case

20

Voldemort-Mapreduce

•  Voldemort has higher MF sensitivity than Matrix-Mult and
Wordcount
•  Voldemort worst-case times improved almost 3 times when
contention caused by Matrix-Mult is mitigated using VP methods
•  ~8% overhead in moving applications to “good” configuration (as
of the baseline) 21

• Current implementation – centralized platform
manager and per-VP (per-application) platform
monitor

• However, need for scale, and thermal and power
constraints, lead to platform designs with
▫  increase in corecounts, complex memory

hierarchies…
▫  tile based design (e.g., SCC)
▫ special(ized) engines (e.g., asymmetric or

heterogeneous cores and accelerators), including
software-based specialization (e.g., run RT-
scheduler on subset of cores)

Platform Manager Revisited

• Resource Islands – resource sets under control
of independent managers
▫ E.g., multiple/different CPU schedulers for sets of

cores; different runtime/scheduler for graphics or
communication cores

• Applications – Virtual Platforms – are overlayed
across islands

• Coordination mechanisms to advise island
managers to adjust resource allocations or, if
possible, to trade resources across islands

Islands of Resources

Need for island coordination

Islands must coordinate to trade resources to meet
elastic application requirements.

Pipelined Web application: RUBiS

Thank you. Questions?

26

