ISTC for Cloud Computing: Center Overview

Greg Ganger & Phil Gibbons ISTC-CC Retreat 2012 November 29, 2012

http://www.istc-cc.cmu.edu/

Intel Science & Technology Center for Cloud Computing

Why ISTC for Cloud Computing?

- Cloud computing has exploded onto the scenes
 By 2020, most computing may be cloud-based
- Cloud computing promises huge benefits in...
 - resource efficiency and utilization
 - agility and productivity of application dev+deploy
 - system and service robustness
 - data sharing and end user access
- But, hype far ahead of capability & knowledge
 huge need for research at many levels

ISTC-CC: Institutions & Faculty

- Carnegie Mellon University
 - Greg Ganger (PI), Dave Andersen, Guy Blelloch, Garth Gibson, Carlos Guestrin, Mor Harchol-Balter, Todd Mowry, Onur Mutlu, Priya Narasimhan, M. Satyanarayanan, Dan Siewiorek, Eric Xing
- Georgia Tech
 - Greg Eisenhower, Ada Gavrilovska, Ling Liu, Calton Pu, Karsten Schwan, Matthew Wolf, Sudha Yalamanchili
- Princeton University
 - Mike Freedman, Kai Li, Margaret Martonosi
- University of California at Berkeley
 - Anthony Joseph, Randy Katz, Ion Stoica
- Intel Labs
 - Phil Gibbons (PI), Michael Kaminsky, Mike Kozuch, Babu Pillai

ISTC-CC: Intel Oversight & BoA

- Intel oversight
 - Wen-Hann Wang (Executive Sponsor)
 - Rich Uhlig (Managing Director)
 - Limor Fix (Director of UnCoR)
 - Chris Ramming (Director of UCO)
 - Jeff Parkhurst (Program Director)
- Board of Advisors (including Wen-Hann and Rich)
 - Jason Waxman (Gen. Mgr. Cloud Infra. Group, Intel)
 - Balint Fleischer (Gen. Mgr. Data Center Group, Intel)
 - Frans Kaashoek (Professor of CS&Eng, MIT)
 - Randy Bryant (Dean of School of CS, CMU)
 - Pradeep Khosla (Chancellor, UC San Diego)

ISTC-CC Research Vision

Future Cloud Computing will:

- incorporate <u>heterogeneous mixes</u> of specialized platforms exploiting a variety of emerging technologies
- be dominated by <u>big data</u> analytics over stored and live data feeds
- encompass billions of edge devices through <u>new paradigms for</u> <u>meshing clients and cloud</u>
- rely on significant advances in <u>automation</u> to realize desired efficiency and productivity

ISTC-CC Pillars

ISTC-CC's Research Pillars

intel

Carnegie Mellon

University

Georgia Tech Underlying Infrastructure enabling the future of cloud computing

PRINCETON UNIVERSITY

www.istc-cc.cmu.edu

UC Berkeley.

Automation Pillar

- Automation is crucial to cloud reaching potential
 - We suspect that no one here needs to be convinced of this...
- Management is very hard, but cloud makes it worse
 - Much larger scale
 - Much more varied mix of applications/activities
 - Much less pre-knowledge of applications
 - $\, \circ \,$ And, we're adding in platform specialization $\odot \,$
- Leaps forward needed on many fronts...
 - Diagnosis, scheduling, instrumentation, isolation, tuning, ...

Automation Projects

• A1: Adaptive sizing/scheduling of elastic services

 adaptive control over how many machines contribute to each service and work distribution among them

• A2: Run-time validation of cloud software & patches

 improving productivity by automatically identifying problems in patches and other cloud software changes

A3: Problem diagnosis tools & techniques

 new scalable collection and analysis techniques to enable rapid, robust diagnosis of failures and performance problems for both providers and tenants (apps and services)

• A4: Dynamic scheduling of heterogeneous mixes of frameworks and services

 new multi-level scheduling architectures enabling SW framework specialization (esp. Big Data) across specialized platforms

Specialization	Automation	Big Data	To the Edge

Automation at Retreat 2012

Talks / Breakouts

- "Performance Isolation and Fairness for Multi-Tenant Cloud Storage", Mike Freedman
- "Virtual Platforms: Hypervisor-Level Support for Increased Consolidation", Ada Gavrilovska
- "Stuff happens", BoF Breakout on Problem Diagnosis

• Posters

- vQuery: Tracking configuration + performance
- Black-box localization of storage problems in parallel file systems
- Diagnosing performance changes by comparing request flows
- Dynamic power management for multi-tier data centers
- CacheScale: saving cash by using less cache
- alsched: Algebraic scheduling in heterogeneous clouds
- Heterogeneity and dynamicity of clouds at scale: Google trace analysis
- Problem localization for Hadoop using Draco
- Mochi: Visual log-analysis based tools for debugging Hadoop
- Guardrail: High fidelity checking of device drivers for I/O
- JackRabbit: Improved Agility in Elastic Distributed Storage
- Landslide: Systematic Dynamic Race Detection in Kernel Space
- Oncilla A GAS Run-time for Efficient Resource Partitioning in Data Centers

- Exploratory testing at scale
- Visual signatures for Hadoop diagnosis

Example Automation activities in posters

Different problem diagnosis approaches

- No single approach handles all scenarios... a collection of tools needed
- One style exploits hardware/software counters
 - e.g., peer comparison to look for strange nodes
 - e.g., correlating performance metric changes with configuration changes
- Another style exploits request flow tracing in distributed services
 - E.g., compare request flow graphs across two periods of time
 - E.g., find longest-latency paths in complex services-of-services

New approach to job scheduling in heterogeneous clouds

- Assigning the right resources to each of many different applications
- Multi-level scheduling when the "apps" are parallel frameworks

• New algorithms for elasticity of cloud services

- Enabling use in multi-tier services
- Enabling use in stateful services, like Big Data storage

Big Data Pillar

~600 TB

300 EB/yr

12 ЕВ/уг

Particle Physics

MEGA

• Extracting insights from large datasets

- "Analytics" or "Data-intensive computing"
- Becoming critical in nearly every domain
 - likely to dominate future cloud data centers
- Need new programming/execution models
 - For productivity, efficiency, and agility
 - Resource efficient operation on shared, specialized infrastructures

1015

PFTA

FX

Estimating the Exaflood, Discovery Institute, January 2008 *Amassing Digital Fortunes, a Digital Storage Study*, Consumer Electronic Association, March 2008

GIGA

Big Data Projects

• B1: APIs and frameworks for advanced machine learning on Big Data

 new programming and system abstractions enabling efficiency and productivity for next-generation DISC

• B2: Characterization and better programming of Big Data applications

 measuring, characterizing (benchmark creation), and building tools to enhance effectiveness of DISC application activities

• B3: Online high ingest for Big Data cloud data stores

 exploring trade-offs and new approaches to supporting highingest data, including efficiency, consistency, and latency

Specialization	Automation	Big Data	To the Edge

Big Data at Retreat 2012

Talks / Breakouts

- 6 talks
 - Gibson, Guestrin, Ananthanarayanan, Stoica, Cipar, Willke
 - Describing different approaches to cloud support for Big Data computations
 - \dots and one highlighting a success story of new collaboration with SAL
- "Frameworks, frameworks everywhere!", BoF Breakout

• Posters

- GraphLab 2: Distributed graph-parallel computation on natural graphs
- Big Machine Learning: needs and directions
- Space-efficient, high-performance rank & select structures
- LazyTables: Distributed data for machine learning
- Scaling metadata in HDFS
- Scaling Metadata Performance for POSIX Applications
- Y-ray: Scalable real-time extraction of log file updates from VMs
- A data-correlation-aware framework for sparse regression in the cloud
- GraphChi: Large-scale graph computation on just a PC
- PACMan: Coordinated memory caching for parallel analytics jobs
- Performing cloud computation on a parallel file system
- PLFS/HDFS: HPC applications on cloud storage

Specialization Pillar

Low power nodes

Phase-change memory (PCM)

- Specialization is fundamental to efficiency
 - No single platform best for all application types
 - Called division of labor in sociology
- Cloud computing must embrace specialization
 - As well as consequent heterogeneity and change-over-time
 - Stark contrast to common cloud thinking
- New approaches needed to enable...
 - Effective mixes of targeted and general platform types
 - Nimble incorporation of new technologies and accelerators

Specialization Projects

• S1: Specialized platforms of wimpy nodes

 exploring + extending range of apps for such platforms by overcoming OS limits, memory limits, and scalability issues

• S2: Specializing heterogeneous many-core platforms for cloud computing

 exploring + extending range of apps for such platforms with new resource mgmt algorithms and portability abstractions

• S3: Exploitation of NVM in cloud computing

 exploring how cloud apps can exploit NVM as well as needed system support and possible NVM specializations

Specialization	Automation	Big Data	To the Edge

Specialization at Retreat 2012

Talks / Breakouts

- "Architecting and Exploiting Asymmetry to Accelerate Bottlenecks in the Cloud", Onur Mutlu
- "We're Still Having FAWN", Dave Andersen
- "Heterogeneous Parallelism and GPU Offloading: Optimization and Synchronization Challenges", Margaret Martonosi
- "Memory-Efficient GroupBy-Aggregate using Compressed Buffer Trees", Hrishi Amur
- "There's a processor in there?", BoF Breakout
- "An architectural melting pot", BoF Breakout

Specialization at Retreat 2012

• Posters

- Techniques for Data Mapping and Buffering to Exploit Asymmetry in Multi-Level Cell (Phase Change) Memory
- Hashfilter: Making Bloomfilter Even More Compact and Deletable
- MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect
- Application-to-Core Mapping Policies to Reduce Memory Interference in Multi-Core Systems
- MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing
- Row Buffer Locality Aware Caching Policies for Hybrid Memories
- Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture
- Base-Delta-Immediate Compression: Practical Data Compression for On-chip Caches
- Linearly Compressed Pages: A Main Memory Compression Framework with Low Complexity and Low Latency
- HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Staged Memory Scheduling

- A Case for Subarray-Level Parallelism (SALP) in DRAM
- Analyzing and Optimizing GPU Communication and Computation
- Memory-Efficient GroupBy-Aggregate using Compressed Buffer Trees
- RAIDR: Retention-Aware Intelligent DRAM Refresh
- MISE: Providing Performance Predictability in Shared Main Memory Systems
- RowClone: In-DRAM Copy and Initialization of Bulk Data
- Identifying and Mitigating Memory Resource Contention to Accelerate Data-Intensive Workloads

To the Edge Pillar

- Edge devices will participate in cloud activities
 - Serving as bridge to physical world (sense/actuate)
 - Enhancing interactivity despite location / connectivity
- Need new programming/ execution models
 - For adaptive cloud
 + edge cooperation

To the Edge Projects

- E1: Adaptive work division among clients, edge servers, and core cloud
 - new programming frameworks and system architectures, including edge-local cloud resources, for dynamic exploitation of cloud resources to enable rich edge device experiences
 - example app: interactive perception

• E2: Efficient, client-effective use of limited wide-area bandwidth

 new communication approaches for reducing reliance on expensive WAN-uplink bandwidth, including exploitation of new de-duplication and replication/consistency models

To the Edge at Retreat 2012

- Talks / Breakouts
 - "Beyond Offload: Cloudlets for Large-Scale Video Upload", Pieter Simeons
 - "Livin' on the edge", BoF Breakout
- Posters
 - Eiger: Stronger Semantics for Low-Latency Geo-Replicated Storage
 - Builds on their SOSP'11 paper (COPS)
 - Egalitarian Paxos
 - Removes serial bottleneck in Fault Tolerance thru State Machine replication
 - Rapid VM Synthesis for Cloudlet
 - Reduces critical path for offload from mobile to cloudlet
 - Scalable Crowd-Sourcing of Video from Mobile Devices
 - Using cloudlets for UPLOAD
 - Intelligent Virtual Appliance Delivery over Wide Area Networks

ISTC-CC: Cross-Institution Collaboration

Project		Faculty	
S1	Specialized Platforms of Wimpy Nodes	Andersen[C], Schwan[G], Kaminsky[I],	
		Kozuch[I], Pillai[I]	
S2	Specialized Platforms of Heterogeneous	Mutlu[C], Mowry[C], Gavrilovska[G], Schwan[G],	
	Many-Cores	Yalamanchili[G], Martonosi[P], Gibbons[I], Kozuch[I]	
S3	Exploring the Disruptive Impact of NVM	Andersen[C], Mutlu[C], Schwan[G],	
	on Cloud Computing	Kaminsky[I], Gibbons[I]	
A1	Mechanisms and Scheduling Algorithms	Harchol-Balter[C], Ganger[C], Pu[G], Kozuch[I]	
	for Elastic Sizing of Scalable Services		
A2	Run-time Validation of Cloud Software	Mowry[C], Gibbons[I], Kozuch[I]	
A3	Problem Diagnosis	Ganger[C], Narasimhan[C], Schwan[G],	
		Eisenhauer[G], Liu[G], Wolf[G]	
A4	Robust Mixed-framework Scheduling of	Ganger[C], Stoica[B], Joseph[B], Katz[B], Kozuch[I]	
	Data Center Resources		
B1	Scalable and Efficient DISC for advanced	Guestrin[C], Blelloch[C], Ganger[C], Gibson[C],	
	machine learning algorithms	Xing[C], Stoica[B], Gibbons[I]	
B2	Characterization, Classification and	Gibson[C], Ganger[C], Schwan[G], Pu[G],	
	Better Programming of Big Data Apps	Katz[B], Blelloch[C], Gibbons[I], Kozuch[I]	
B3	Flexible and Efficient Ingest-intensive	Gibson[C], Ganger[C], Schwan[G]	
	Semi-Structured Cloud Data Stores		
E1	Cloud-Assisted Mobile Client	Satya[C], Siewiorek[C], Liu[G], Schwan[G],	
	Computations	Gavrilovska[G], Martonosi[P], Pillai[I]	
E2	Wide-Area Replication, Consistency, and	Andersen[C], Freedman[P], Li[P], Kaminsky[I]	
	Deduplication		

ISTC-CC: Year 1 Publication Highlights

- SOSP (Oct'11) 3 papers
- SOCC (Oct'11) 4 papers
- SC (Nov'11) 2 papers
- MICRO (Dec'11) 6 papers
- ASPLOS (Mar'12) 2 papers
- NSDI (Apr'12) 3 papers
- EuroSys (Apr'12) 5 papers
- CLOUD (Jun'12) 3 papers
- HotCloud (Jun'12) 6 papers
- ISCA (Jun'12) 3 papers
- SPAA (Jun'12) 3 papers
- IGCC (Jun'12) 2 papers
- Usenix ATC (Jun'12) 2 papers
- PACT (Sep'12) 3 papers (accepted)
- OSDI (Oct'12) 3 papers (accepted)

68 published papers highlighted in ISTC-CC Newsletter for Year 1 (July'11- June'12)

ISTC-CC: Year 1 Honors

Highlights of Year 1 Honors

- National Academy of Engineering (Li) [joining Katz, Siewiorek]
- ACM Fellow (Blelloch) [now 7 in all + 6 IEEE Fellows]
- IEEE Young Computer Architect Award (Mutlu)
- Sloan Foundation Fellow (Andersen)
- SIGOPS Hall of Fame paper (Gibson, Katz)
- SIGMOBILE Outstanding Contribution Award (Satya, Siewiorek)
- PECASE (Freedman)
- IEEE Technical Achievement Award (Liu)
- Endowed Professorship (Ganger, Martonosi)
- Multiple Best Paper awards, Joulesort wins, etc

ISTC-CC: Amplifying Funding

New Amplifying Funding awarded in Year 1

- Greg Ganger NSF
- Ada Gavrilovska and Karsten Schwan NSF, Samsung
- Garth Gibson NSF, NSA, LANL (multiple awards)
- Mor Harchol-Balter NSF
- Onur Mutlu NSF
- M. Satyanarayanan and Dan Sieworek NSF
- Ion Stoica, Anthony Joseph, Randy Katz NSF Expedition
- Sudhakar Yalamanchili NVIDIA, AMD
- Consortia: AMPlab (Berkeley), CERCS (GA Tech), PDL (CMU)
- Fellowships: Intel, Facebook, NSF, NSERC, CRA, etc.

+ Considerable Amplifying Funding carrying over into Year 1

=> Intel support for 25 students, yet working with 68

Agenda for Rest of Today

[10:30-11:15] Keynote: Balint Fleischer (GM, Intel Data Center Group)

- [11:15-11:45] Poster previews (30 secs each) Babu Pillai (Intel Labs)
- [11:45-1:15] Lunch /Poster session #1
- [1:15-2:45] **Poster session #2**
- [2:45-3:00] Break
- [3:00-4:30] Research Talks session #1
 - Garth Gibson (CMU), "Convergence of BigData Infrastructure for HPC & Internet Services"
 - Carlos Guestrin (CMU/Washington), "GraphLab2: A Distributed Abstraction for..."
 - Ganesh Ananthanarayanan (UC Berkeley), "PACMan: Coordinated Memory ..."

[4:30-4:45] Break

[4:45-6:15] Research Talks session #2

- Onur Mutlu (CMU), "Architecting and Exploiting Asymmetry to Accelerate Bottlenecks ..."
- Ada Gavrilovska (GA Tech), "Virtual Platforms: Hypervisor-level Support for Increased..."
- Dave Andersen (CMU), "We're Still Having FAWN"

[6:15-6:30] Group Photo then Transportation to dinner [6:30-9:00] Reception / Dinner at Pittsburgh Athletic Club

Agenda for Tomorrow

[8:30-9:00] Breakfast / Welcome

[9:00-9:45] Keynote: Das Kamout (Intel IT Cloud Lead)

[9:45-10:45] Research Talks session #3

- Ion Stoica (Berkeley), "Spark, Shark, and BlinkDB"
- Mike Freedman (Princeton), "Performance Isolation and Fairness for Multi-Tenant..."

[10:45-11:00] Break

[11:00-noon] Research Talks session #4

- Margaret Martonosi (Princeton), "Heterogeneous Parallelism and GPU Offloading..."
- Pieter Simoens (CMU), "Beyond Offload: Cloudlets for Large-Scale Video Upload"

[noon-12:20] Minutes of Madness - Michael Kaminsky (Intel Labs) 🗡

[12:20-1:45] Lunch / Birds-of-a-Feather Breakouts - Mike Kozuch (Intel Labs)

[1:45-3:15] Research Talks session #5

Jim Cipar (CMU), "Exploiting Data Staleness for High-performance Machine Learning"

- Hrishi Amur (GA Tech), "Memory-Efficient GroupBy-Aggregate using Compressed..."
- Ted Willke (Intel SAL), "GraphBuilder: A SAL/ISTC-CC Collaboration Story"

[3:15-4:15] All-Hands Brainstorming - Jeff Parkhurst (Intel)

Concluding Thoughts

Retreat Goal: Benefit the research projects

- Community building
- Brainstorming/feedback (but not ARs 🙂) on:
 - ideas & approaches for tackling the research challenges
 - jump-start collaborations
 - synergies & connections
- Learn, share & have fun

Who to see about...

- Poster Previews/Sessions: see Babu Pillai
- Minutes of Madness: see Michael Kaminsky
- Birds-of-a-Feather Breakouts: see Mike Kozuch
- Logistics questions/issues: see Jennifer Gabig