# Exploiting data staleness for high-performance machine learning

### Jim Cipar

### Qirong Ho, Greg Ganger, Eric Xing, Kim Keeton (HP Labs) PARALLEL DATA LABORATORY

Carnegie Mellon University

### Overview

- Intermediate data crucial for ML performance
- LazyTables: very fast intermediate data
- Achieve high performance by allowing stale data
  - This is OK for many ML algorithms

### Outline

- Insights from LazyBase
- Machine learning applications
- LazyTables design
- Future research



- Database designed for analysis of observations
  - E.g. Information management, social network data
  - Continuous high-throughput updates
- Key observation: Applications can use stale data
  - Different queries have different freshness requirements
  - Allowing for staleness can improve performance

### **Example application**

- High bandwidth stream of Tweets
  - 200 million per day
  - Up to 20k per second





## **Example application**

- High bandwidth stream of Tweets
  - 200 million per day
  - Up to 20k per second



WHEN AN EARTHQUAKE HITS, PEOPLE FLOOD THE INTERNET
OUT IT-SOME
OE FROSDest: USGS Twitter Earthquake Detector

•Freshest: USGS Twitter Earthquake Detector



WITHIN 20 OR 30 SECONDS.

•Fresh: Hot news in last 10 minutes

•Stale: social network graph analysis

### •Freshness depends on query not data

### **Applications and freshness**

| Freshness /<br>Domain | Seconds               | Minutes                | Hours+                                    |
|-----------------------|-----------------------|------------------------|-------------------------------------------|
| Transportation        | Emergency<br>response | Real-time traffic maps | Traffic<br>engineering,<br>route planning |

### **Applications and freshness**

| Freshness /<br>Domain                   | Seconds                               | Minutes                      | Hours+                                    |
|-----------------------------------------|---------------------------------------|------------------------------|-------------------------------------------|
| Transportation                          | Emergency<br>response                 | Real-time traffic maps       | Traffic<br>engineering,<br>route planning |
| Retail                                  | Real-time<br>coupons,<br>targeted ads | Just-in-time<br>inventory    | Product search,<br>earnings reports       |
| Enterprise<br>information<br>management | Infected<br>machine<br>identification | File-based policy validation | E-discovery<br>requests,<br>search        |

# High throughput updates

- Must support continuous high-volume update
- Batching: group many updates, apply at once
- Batching updates provides high performance
  - Common technique for high throughput
  - Amortize bookkeeping costs for performing updates

### **Batching and performance**

### Large batches of updates increase throughput



### Batching causes staleness

- Large updates take a long time to process
  - Large batches → database is very stale
  - Very large batches/busy system → could be hours old
- Staleness OK for some queries, bad for others

# Solution: allow queries to access data before it's been applied to database

### LazyBase pipeline



### Query latency/freshness

### Queries allowing staler results return faster



## Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
  - Property of query, not data
  - Can change over time
  - Make them explicit, not implied

### Outline

- Insights from LazyBase
- Machine learning applications
- Lazy writes and initial results
- System design
- Future research

Input data (small)





http://www.pdl.cmu.edu/



• Bulk of time spent in iteration steps

 Performance of intermediate data crucial to performance of algorithm Intermediate Program state (potentially big)



(2) Iterate, many small updates

### **Example: Topic modeling**



# Corpus of documents

### **Example: Topic modeling**



# Corpus of documents

### **Example: Topic modeling**



# Corpus of documents

## LDA topic modeling

- Assign each word in each document to a topic
  - Guided by LDA model and other word assignments
- Continue reassigning until model looks "good"
- Two main data structures
  - Topic-word table
  - Document-topic table

### **Topic-word table**

# Number of times a word (in any doc) is associated with a particular topic

|          | Jobs | Economy | Obama | Romney | His | Says |
|----------|------|---------|-------|--------|-----|------|
| Generic  | 5    | 1       | 0     | 0      | 51  | 78   |
| Politics | 2    | 10      | 105   | 121    | 1   | 2    |
| Finance  | 231  | 312     | 22    | 3      | 0   | 1    |

### **Document-topic table**

# Number of times any word in that document is associated with a topic

|            | Generic | Politics | Finance |
|------------|---------|----------|---------|
| Document 1 | 40      | 49       | 11      |
| Document 2 | 75      | 12       | 13      |
| Document 3 | 20      | 4        | 151     |

#### **Topic-word**

|          | Jobs | Obama | Says |
|----------|------|-------|------|
| Generic  | 5    | 0     | 78   |
| Politics | 2    | 105   | 2    |
| Finance  | 231  | 22    | 1    |

### Document 1

Obama says jobs...

### **Read document**

### **Document-topic**

|        | Gen. | Pol. | Fin. |
|--------|------|------|------|
| Doc. 1 | 40   | 49   | 11   |
| Doc. 2 | 75   | 12   | 13   |
| Doc. 3 | 20   | 4    | 151  |

#### **Topic-word**

|          | Jobs | Obama | Says |
|----------|------|-------|------|
| Generic  | 5    | 0     | 78   |
| Politics | 2    | 105   | 2    |
| Finance  | 231  | 22    | 1    |

### **Document-topic**

|        | Gen. | Pol. | Fin. |
|--------|------|------|------|
| Doc. 1 | 40   | 49   | 11   |
| Doc. 2 | 75   | 12   | 13   |
| Doc. 3 | 20   | 4    | 151  |

#### Carnegie Mellon Parallel Data Laboratory

### Document 1

Obama says jobs...

For each word, look at column of topic-word table



### **Document-topic**

|        | Gen. | Poi.  | ГШ.   |  |
|--------|------|-------|-------|--|
| Doc. 1 | 40   | 49 -1 | 11 +1 |  |
| Doc. 2 | 75   | 12    | 13    |  |
| Doc. 3 | 20   | 4     | 151   |  |

#### Carnegie Mellon Parallel Data Laboratory

### Document 1

Obama says jobs...

Potentially assign word to different topic

# If so, update tables accordingly

#### **Topic-word** Says Jobs Obama Generic 5 0 78 2 **Politics** 105 - 1 2 22 +1 1 Finance 231

### **Document-topic**

|        | Gen. | Pol.  | Fin.  |
|--------|------|-------|-------|
| Doc. 1 | 40   | 49 -1 | 11 +1 |
| Doc. 2 | 75   | 12    | 13    |
| Doc. 3 | 20   | 4     | 151   |

#### Carnegie Mellon Parallel Data Laboratory

### Document 1

Obama **says** jobs...

Move on to next word and repeat

**Topic-word** Jobs Obama Says Generic 5 0 78 2 2 **Politics** 105 Finance 22 1 231

#### **Document-topic**

|        | Gen. | Pol. | Fin. |
|--------|------|------|------|
| Doc. 1 | 40   | 49   | 11   |
| Doc. 2 | 75   | 12   | 13   |
| Doc. 3 | 20   | 4    | 151  |



Topic-word

|          | Jobs | Obama | Says |
|----------|------|-------|------|
| Generic  | 5    | 0     | 78   |
| Politics | 2    | 105   | 2    |
| Finance  | 231  | 22    | 1    |

### **Document-topic**

|        | Gen. | Pol. | Fin. |
|--------|------|------|------|
| Doc. 1 | 40   | 49   | 11   |
| Doc. 2 | 75   | 12   | 13   |
| Doc. 3 | 20   | 4    | 151  |



Topic-word Jobs Obama Savs

|          |     | Oballia | Cayo |
|----------|-----|---------|------|
| Generic  | 5   | 0       | 78   |
| Politics | 2   | 105     | 2    |
| Finance  | 231 | 22      | 1    |

#### **Document-topic**

|        | Gen. | Pol. | Fin. |
|--------|------|------|------|
| Doc. 1 | 40   | 49   | 11   |
| Doc. 2 | 75   | 12   | 13   |
| Doc. 3 | 20   | 4    | 151  |





**Topic-word** Jobs Obama Says Generic 5  $\mathbf{O}$ 78 **Politics** 2 2 105 22 1 Finance 231

#### **Document-topic**

|        | Gen. | Pol. | Fin. |
|--------|------|------|------|
| Doc. 1 | 40   | 49   | 11   |
| Doc. 2 | 75   | 12   | 13   |
| Doc. 3 | 20   | 4    | 151  |





# Other algorithms

- Coordinate descent
  - Finding points in multidimensional space
  - Each process updates subset of coordinates
  - Must read updates from other threads
- K-means
  - Grouping points by location
  - Processes update subset of points...
  - Based on shared grouping information
## (Brief) related work

- GraphLab represents intermediate state as graph
  - Each node has local state, update function
  - When neighbor state changes, call update function
  - Works well when variable interactions are local
- Spark stores large tables in memory
  - Tables are updated via bulk operations
  - Keep log of operations for fault tolerance
  - Replace entire data set at once, not point updates
- Piccolo provides distributed table of values

# Table API (Piccolo, LazyTables)

- Basic operations:
  - read, read\_row, put
- Table can use one self-commutative update:

| increment(row, col, val) | table[row, col] += val                              |
|--------------------------|-----------------------------------------------------|
| multiply(row, col, val)  | table[row, col] *= val                              |
| update(row, col, val, f) | <pre>table[row,col] = f(table[row, col], val)</pre> |

### Outline

- Insights from LazyBase
- Machine learning applications
- LazyTables design
- Future research

### System diagram



### **Design overview**

- Problem: frequent reads and writes to shared data
  - Dominate performance of algorithm
  - Need very low latency

## Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
  - Property of query, not data
  - Can change over time
  - Make them explicit, not implied

## Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
  - Property of query, not data
  - Can change over time
  - Make them explicit, not implied

### ML algorithms tolerate staleness

- Algorithms are convergent
  - Start with "bad" solution
  - Iteratively improve solution
  - Eventually converge on "good" solution
- If they get thrown off, they can just continue
- Example: coordinate descent
  - Finding minimum point in space

### ML algorithms tolerate "errors"



- Starts with initial guess, iteratively improves
- Eventually converges to "correct" result

### Coord. Descent and staleness

- Simulated coordinate descent with stale data
- Two processes, updating X and Y respectively
- Take 5 iterations to propagate between processes

### ML algorithms tolerate staleness



- Processes don't get updates immediately
- Shared state converges to correct result

## Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
  - Property of query, not data
  - Can change over time
  - Make them explicit, not implied

### ML algorithms tolerate staleness

### At start, finding good direction is easy Near end, seeing other updates important



- Processes don't get updates immediately
- Shared state converges to correct result

30

### Specifying freshness

- Each read operation specifies requirement
  - E.g. "read row 12 with all updates as of iteration 5"
- If data from all processes is ready, return
- Otherwise wait for other processes to update
- Requires fresher data → may wait longer

### Is stale data really a win?

- Stale data can slow down convergence
  - Could mean more iterations required to finish
- ...but each iteration is much faster
- Likely a "sweet spot" in freshness requirement
  - Could depend on input data, algorithm progression...

### Freshness/latency sweet spot



Carnegie Mellon

http://www.pdl.cmu.edu/

**Parallel Data Laboratory** 

## Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
  - Property of query, not data
  - Can change over time
  - Make them explicit, not implied

### **Design overview**

- Problem: frequent reads and writes to shared data
  - Dominate performance of algorithm
  - Need very low latency
- Read solution: Caching
  - Reads exhibit locality (set of words in doc. constant)

### Cache requires 2 data structures

- Per-process cache of table rows
  - Each row tagged with age of row
  - When reading, check age
  - Too old → freshness miss, re-read row
- Vector clock in table server
  - Track what iteration each process is on
  - On read, age of data is minimum value in clock
  - iterate() operation increments clock for a process











### **Design overview**

- Problem: frequent reads and writes to shared data
  - Dominate performance of algorithm
  - Need very low latency
- Read solution: Caching
  - Reads exhibit locality (set of words in doc. constant)
- Write solution: Operation logging
  - Batch many updates and apply at once

### Oplog data structure

- Log of update operations, not values
  - E.g. "add one to row 5, column 2"
- Batch many operations at process
- Send batch on iterate() call









Parallel Data Laboratory



Parallel Data Laboratory

### Initial experiments

- Simple C++ table implementation
  - Based on STL map<> data structure
  - Get/put, increment/decrement, multiply
- Basic implementation: reader/writer locks
- Lazy implementation
  - Queue updates in thread-local storage
  - After 1k updates or flush() perform bulk update
- Used actual document classification code
  - Latent Dirichlet Allocation algorithm
  - Similar in behavior to coordinate descent

### Initial results



Number of cores and threads

### Batching updates improves performance Locking too expensive for every update

### Outline

- Insights from LazyBase
- Machine learning applications
- LazyTables design
- Future research

### Which algorithms can benefit?

- Does staleness affect some applications more?
- Differences in update rate
  - Little benefit to lazy writes
- Differences in freshness requirements
  - Lazy writes could be too costly

### Freshness/latency tradeoff



# Layers of cache provide tradeoff between freshness of data and latency of reads

### Conclusions

- LazyTables: shared intermediate state for ML
  - High-throughput updates
- Improve performance by allowing stale data
  - Extensive use of batching and caching
- Make freshness requirements explicit
  - Different requirements for each read operation

### References

- Apache Mahout, <u>http://mahout.apache.org</u>.
- D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
- J. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for I1-regularized loss minimization.
- J. Cipar, G. Ganger, K. Keeton, C. B. Morrey, III, C. A. Soules, and A. Veitch. LazyBase: trading freshness for performance in a scalable database.
- Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Graphlab: A new parallel framework for machine learning.
- Y. Low, G. Joseph, K. Aapo, D. Bickson, C. Guestrin, and M. Hellerstein, Joseph. Distributed GraphLab: A framework for machine learning and data mining in the cloud.
- R. Power and J. Li. Piccolo: building fast, distributed programs with partitioned tables.
- M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster comput- ing.