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Overview 
• Intermediate data crucial for ML performance 

 
• LazyTables: very fast intermediate data 

 
• Achieve high performance by allowing stale data 

• This is OK for many ML algorithms 



Outline 
• Insights from LazyBase 
• Machine learning applications 
• LazyTables design 
• Future research 
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LazyBase 
 

• Database designed for analysis of observations 
• E.g. Information management, social network data 
• Continuous high-throughput updates 
 

• Key observation: Applications can use stale data 
• Different queries have different freshness requirements 
• Allowing for staleness can improve performance 
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Example application 
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• High bandwidth stream of Tweets 
• 200 million per day 
• Up to 20k per second 



Example application 
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• High bandwidth stream of Tweets 
• 200 million per day 
• Up to 20k per second 

•Queries accept different freshness levels 
•Freshest: USGS Twitter Earthquake Detector 
•Fresh: Hot news in last 10 minutes 
•Stale: social network graph analysis 
 

•Freshness depends on query not data 



Applications and freshness 
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Freshness / 
Domain 

Seconds Minutes Hours+ 

Transportation Emergency 
response 

Real-time traffic 
maps 

Traffic 
engineering, 
route planning 



Applications and freshness 
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Freshness / 
Domain 

Seconds Minutes Hours+ 

Transportation Emergency 
response 

Real-time traffic 
maps 

Traffic 
engineering, 
route planning 

Retail Real-time 
coupons, 
targeted ads 

Just-in-time 
inventory 

Product search, 
earnings reports 

Enterprise 
information 
management 

Infected 
machine 
identification 

File-based 
policy validation 

E-discovery 
requests, 
search 



High throughput updates 
• Must support continuous high-volume update 

 
• Batching: group many updates, apply at once 

 
• Batching updates provides high performance 

• Common technique for high throughput 
• Amortize bookkeeping costs for performing updates 
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Batching and performance 
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Large batches of updates increase throughput 



Batching causes staleness 
• Large updates take a long time to process 

• Large batches  database is very stale 
• Very large batches/busy system  could be hours old 

 
• Staleness OK for some queries, bad for others 

 
Solution: allow queries to access data  

before it’s been applied to database 
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LazyBase pipeline 
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Ingest Sort Merge 

Raw Input Sorted Authority 
table 

Slow, fresh     Fast, stale 

Client 
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Query latency/freshness 
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Queries allowing staler results return faster 



Insights from LazyBase 
• Improving performance can cause staleness 

 
• Many applications tolerate data staleness 

 
• Freshness requirements are important 

• Property of query, not data 
• Can change over time 
• Make them explicit, not implied 
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Outline 
• Insights from LazyBase 
• Machine learning applications 
• Lazy writes and initial results 
• System design 
• Future research 
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A typical ML algorithm 
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Input data 
(small) 
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A typical ML algorithm 
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Input data 
(small) 

(1) initialization 

Intermediate 
Program state 

(potentially big) 
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A typical ML algorithm 
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Input data 
(small) 

(1) initialization 

Intermediate 
Program state 

(potentially big) 

(2) Iterate, many 
small updates 
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A typical ML algorithm 
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Input data 
(small) 

Output results 
(small) 

(1) initialization 

Intermediate 
Program state 

(potentially big) 

(2) Iterate, many 
small updates 

(3) Output results 
after many iterations 
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A typical ML algorithm 
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Intermediate 
Program state 

(potentially big) 

(2) Iterate, many 
small updates 

• Bulk of time spent 
in iteration steps 
 
 

• Performance of 
intermediate data 
crucial to 
performance of 
algorithm 
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Example: Topic modeling 
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Corpus of  
documents 
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Example: Topic modeling 

http://www.pdl.cmu.edu/ 22 

Corpus of  
documents 

Topic modeler Iterate 
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Example: Topic modeling 
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Corpus of  
documents 

Topic 
mixtures 

Topic modeler 
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LDA topic modeling 
• Assign each word in each document to a topic 

• Guided by LDA model and other word assignments 
 

• Continue reassigning until model looks “good” 
 

• Two main data structures 
• Topic-word table 
• Document-topic table 
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Topic-word table 
Number of times a word (in any doc) is 

associated with a particular topic 
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Jobs Economy Obama Romney His Says 

Generic 5 1 0 0 51 78 
Politics 2 10 105 121 1 2 

Finance 231 312 22 3 0 1 



Document-topic table 
Number of times any word in that  

document is associated with a topic 
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Generic Politics Finance 

Document 1 40 49 11 

Document 2 75 12 13 

Document 3 20 4 151 



LDA iteration step 

   Jim Cipar  © December 12 http://www.pdl.cmu.edu/ 27 

Jobs Obama Says 
Generic 5 0 78 
Politics 2 105 2 

Finance 231 22 1 

Topic-word 

Gen. Pol. Fin. 

Doc. 1 40 49 11 

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Document-topic 

Document 1 
Obama says jobs… 

Read document 



LDA iteration step 
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Jobs Obama Says 
Generic 5 0 78 
Politics 2 105 2 

Finance 231 22 1 

Topic-word 

Gen. Pol. Fin. 

Doc. 1 40 49 11 

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Document-topic 

Document 1 
Obama says jobs… 

For each word, 
look at column of 
topic-word table  



LDA iteration step 
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Jobs Obama Says 
Generic 5 0 78 
Politics 2 105 -1 2 

Finance 231 22 +1 1 

Topic-word 

Gen. Pol. Fin. 

Doc. 1 40 49 -1 11 +1 

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Document-topic 

Document 1 
Obama says jobs… 

Potentially assign 
word to different 

topic 
 

If so, update 
tables accordingly 



LDA iteration step 
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Jobs Obama Says 
Generic 5 0 78 
Politics 2 105 -1 2 

Finance 231 22 +1 1 

Topic-word 

Gen. Pol. Fin. 

Doc. 1 40 49 -1 11 +1 

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Document-topic 

Document 1 
Obama says jobs… 

Move on to next 
word and repeat 



Parallelizing LDA 
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Topic-word 

Gen. Pol. Fin. 

Doc. 1 40 49  11  

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Document-topic 

Doc. 1 

Multiple 
processes to 

speed up 
iteration steps 

Doc. 2 

Doc. 3 

Process 1 

Process 2 

Doc. 4 

Jobs Obama Says 
Generic 5 0 78 
Politics 2 105 2 

Finance 231 22 1 



Parallelizing LDA 
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Topic-word 

Gen. Pol. Fin. 

Doc. 1 40 49  11  

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Document-topic 

Doc. 1 

Assign each 
document to 
a particular 

process 

Doc. 2 

Doc. 3 

Doc. 4 

Process 1 

Process 2 
Jobs Obama Says 

Generic 5 0 78 
Politics 2 105 2 

Finance 231 22 1 



Parallelizing LDA 
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Topic-word 

Gen. Pol. Fin. 

Doc. 1 40 49  11  

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Document-topic Process can 
“own” rows 
of doc-topic 

table 

Jobs Obama Says 
Generic 5 0 78 
Politics 2 105 2 

Finance 231 22 1 

Doc. 1 

Doc. 2 

Doc. 3 

Doc. 4 

Process 1 

Process 2 



Parallelizing LDA 
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Topic-word 

Document-topic 
But topic-word 
table is shared 

by all 
processes 

Jobs Obama Says 
Generic 5 0 78 
Politics 2 105 2 

Finance 231 22 1 

Gen. Pol. Fin. 

Doc. 1 40 49  11  

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Doc. 1 

Doc. 2 

Doc. 3 

Doc. 4 

Process 1 

Process 2 



Parallelizing LDA 
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Topic-word 

Gen. Pol. Fin. 

Doc. 1 40 49  11  

Doc. 2 75 12 13 

Doc. 3 20 4 151 

Document-topic 

Doc. 1 

Doc. 2 

Doc. 3 

Process 1 

Process 2 

Doc. 4 

Jobs Obama Says 
Generic 5 0 78 
Politics 2 105 2 

Finance 231 22 1 

Performance of algorithm depends 
on performance of topic-word table! 



Other algorithms 
• Coordinate descent 

• Finding points in multidimensional space 
• Each process updates subset of coordinates 
• Must read updates from other threads 

 
• K-means 

• Grouping points by location 
• Processes update subset of points… 
• Based on shared grouping information 
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(Brief) related  work 
• GraphLab represents intermediate state as graph 

• Each node has local state, update function 
• When neighbor state changes, call update function 
• Works well when variable interactions are local 

• Spark stores large tables in memory 
• Tables are updated via bulk operations 
• Keep log of operations for fault tolerance 
• Replace entire data set at once, not point updates 

• Piccolo provides distributed table of values 
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Table API (Piccolo, LazyTables) 
• Basic operations: 

• read, read_row, put 

 

• Table can use one self-commutative update: 

http://www.pdl.cmu.edu/ 38 

increment(row, col, val) table[row, col] += val 

multiply(row, col, val) table[row, col] *= val 

update(row, col, val, f) table[row,col] =  
   f(table[row, col], val) 
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Outline 
• Insights from LazyBase 
• Machine learning applications 
• LazyTables design 
• Future research 
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System diagram 
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Process 1 

Process 2 

Table server 

Table 

Read/write 

Read/write 



Design overview 
• Problem: frequent reads and writes to shared data 

• Dominate performance of algorithm 
• Need very low latency 
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Insights from LazyBase 
• Improving performance can cause staleness 

 
• Many applications tolerate data staleness 

 
• Freshness requirements are important 

• Property of query, not data 
• Can change over time 
• Make them explicit, not implied 
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Insights from LazyBase 
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ML algorithms tolerate staleness 
• Algorithms are convergent 

• Start with “bad” solution 
• Iteratively improve solution 
• Eventually converge on “good” solution 

 
• If they get thrown off, they can just continue 

 
• Example: coordinate descent 

• Finding minimum point in space 
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ML algorithms tolerate “errors” 
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• Starts with initial guess, iteratively improves 
• Eventually converges to “correct” result 

If value is off by a bit, algorithm will fix 
it later. Small errors make no difference 
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Coord. Descent and staleness 
• Simulated coordinate descent with stale data 

 
• Two processes, updating X and Y respectively 

 
• Take 5 iterations to propagate between processes 

   Jim Cipar  © December 12 http://www.pdl.cmu.edu/ 46 



ML algorithms tolerate staleness 
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• Processes don’t get updates immediately 
• Shared state converges to correct result 

Overshot due to staleness, but 
eventually found solution 
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Insights from LazyBase 
• Improving performance can cause staleness 

 
• Many applications tolerate data staleness 

 
• Freshness requirements are important 

• Property of query, not data 
• Can change over time 
• Make them explicit, not implied 
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ML algorithms tolerate staleness 
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• Processes don’t get updates immediately 
• Shared state converges to correct result 

At start, finding good direction is easy 
Near end, seeing other updates important 
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Specifying freshness 
• Each read operation specifies requirement 

• E.g. “read row 12 with all updates as of iteration 5” 
 

• If data from all processes is ready, return 
• Otherwise wait for other processes to update 

 
• Requires fresher data may wait longer 
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Is stale data really a win? 
• Stale data can slow down convergence 

• Could mean more iterations required to finish 
 

• …but each iteration is much faster 
 

• Likely a “sweet spot” in freshness requirement 
• Could depend on input data, algorithm progression… 
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Freshness/latency sweet spot 
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Fresh, slow Stale, fast 

Iterations 
per second  

Progress 
per iteration 

Progress 
per second  

The sweet spot 



Insights from LazyBase 
• Improving performance can cause staleness 

 
• Many applications tolerate data staleness 

 
• Freshness requirements are important 

• Property of query, not data 
• Can change over time 
• Make them explicit, not implied 
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Design overview 
• Problem: frequent reads and writes to shared data 

• Dominate performance of algorithm 
• Need very low latency 

 
• Read solution: Caching 

• Reads exhibit locality (set of words in doc. constant) 
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Cache requires 2 data structures 
• Per-process cache of table rows 

• Each row tagged with age of row 
• When reading, check age 
• Too old  freshness miss, re-read row 

 
• Vector clock in table server 

• Track what iteration each process is on 
• On read, age of data is minimum value in clock 
• iterate() operation increments clock for a process 
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Adding a cache 

   Jim Cipar  © December 12 http://www.pdl.cmu.edu/ 56 

Process 1 Table server 

Table 

Clock 

6 5 9 … 

Process 1 Process 1 
Cache 

Rows 
1 
4 
12 
15 

Ages 
5 
2 
1 
5 



Adding a cache 
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Process 1 Table server 

Table 

Clock 

6 5 9 … 

Process 1 Process 1 
Cache 

Rows 
1 
4 
12 
15 

Ages 
5 
2 
1 
5 

iterate() 
7 



Adding a cache 
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Process 1 Table server 

Table 

Clock 

7 5 9 … 

Process 1 Process 1 
Cache 

Rows 
1 
4 
12 
15 

Ages 
5 
2 
1 
5 

read_row(4,fresh=2) 
Hits in cache.  



Adding a cache 
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Process 1 Table server 

Table 

Clock 

7 5 9 … 

Process 1 Process 1 
Cache 

Rows 
1 
4 
12 
15 

Ages 
5 
2 
1 
5 

read_row() 

read_row(12,fresh=2) 
Cache too old: freshness miss 

5 1 



Design overview 
• Problem: frequent reads and writes to shared data 

• Dominate performance of algorithm 
• Need very low latency 

 
• Read solution: Caching 

• Reads exhibit locality (set of words in doc. constant) 
 

• Write solution: Operation logging 
• Batch many updates and apply at once 
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Oplog data structure 
• Log of update operations, not values 

• E.g. “add one to row 5, column 2” 
 

• Batch many operations at process 
 

• Send batch on iterate() call 
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Adding an oplog 
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Process 1 Table server 

Table 

Clock 

6 5 9 … 

Process 1 Process 1 

Cache 

Oplog 
row 

 
 

col inc 



Adding an oplog 
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Process 1 Table server 

Table 

Clock 

6 5 9 … 

Process 1 Process 1 

Cache 

Oplog 
row 

5 
 

col 
3 

inc 
1 

increment(row 5, col 3, 1) 



Adding an oplog 
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Process 1 Table server 

Table 

Clock 

6 5 9 … 

Process 1 Process 1 

Cache 

Oplog 
row 

5 
2 
 

col 
3 
3 

inc 
1 
-1 

increment(row 2, col 3, -
1) 



Adding an oplog 

   Jim Cipar  © December 12 http://www.pdl.cmu.edu/ 65 

Process 1 Table server 

Table 

Clock 

6 5 9 … 

Process 1 Process 1 

Cache 

Oplog 
row 

5 
2 
 

col 
3 
3 

inc 
1 
-1 

flush() 



Initial experiments 
• Simple C++ table implementation 

• Based on STL map<> data structure 
• Get/put, increment/decrement, multiply 

• Basic implementation: reader/writer locks 
• Lazy implementation 

• Queue updates in thread-local storage 
• After 1k updates - or flush() - perform bulk 

update 
• Used actual document classification code 

• Latent Dirichlet Allocation algorithm 
• Similar in behavior to coordinate descent 

 
http://www.pdl.cmu.edu/ 66    Jim Cipar © December 12 



Initial results 
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Batching updates improves performance 
Locking too expensive for every update 
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Outline 
• Insights from LazyBase 
• Machine learning applications 
• LazyTables design 
• Future research 
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Which algorithms can benefit? 
• Does staleness affect some applications more? 

 
• Differences in update rate 

• Little benefit to lazy writes 
 

• Differences in freshness requirements 
• Lazy writes could be too costly 
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Freshness/latency tradeoff 

Layers of cache provide tradeoff between 
freshness of data and latency of reads 
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Conclusions 
• LazyTables: shared intermediate state for ML 

• High-throughput updates 
 

• Improve performance by allowing stale data 
• Extensive use of batching and caching 

 
• Make freshness requirements explicit 

• Different requirements for each read operation 
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