
Exploiting data staleness for
high-performance machine

learning
Jim Cipar

Qirong Ho, Greg Ganger,
Eric Xing, Kim Keeton (HP Labs)

PARALLEL DATA LABORATORY
Carnegie Mellon University

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 2

Overview
• Intermediate data crucial for ML performance

• LazyTables: very fast intermediate data

• Achieve high performance by allowing stale data

• This is OK for many ML algorithms

Outline
• Insights from LazyBase
• Machine learning applications
• LazyTables design
• Future research

http://www.pdl.cmu.edu/ 3 Jim Cipar © December 12

LazyBase

• Database designed for analysis of observations
• E.g. Information management, social network data
• Continuous high-throughput updates

• Key observation: Applications can use stale data
• Different queries have different freshness requirements
• Allowing for staleness can improve performance

http://www.pdl.cmu.edu/ 4 Jim Cipar © December 12

Example application

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 5

• High bandwidth stream of Tweets
• 200 million per day
• Up to 20k per second

Example application

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 6

• High bandwidth stream of Tweets
• 200 million per day
• Up to 20k per second

•Queries accept different freshness levels
•Freshest: USGS Twitter Earthquake Detector
•Fresh: Hot news in last 10 minutes
•Stale: social network graph analysis

•Freshness depends on query not data

Applications and freshness

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 7

Freshness /
Domain

Seconds Minutes Hours+

Transportation Emergency
response

Real-time traffic
maps

Traffic
engineering,
route planning

Applications and freshness

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 8

Freshness /
Domain

Seconds Minutes Hours+

Transportation Emergency
response

Real-time traffic
maps

Traffic
engineering,
route planning

Retail Real-time
coupons,
targeted ads

Just-in-time
inventory

Product search,
earnings reports

Enterprise
information
management

Infected
machine
identification

File-based
policy validation

E-discovery
requests,
search

High throughput updates
• Must support continuous high-volume update

• Batching: group many updates, apply at once

• Batching updates provides high performance

• Common technique for high throughput
• Amortize bookkeeping costs for performing updates

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 9

Batching and performance

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 10

Large batches of updates increase throughput

Batching causes staleness
• Large updates take a long time to process

• Large batches database is very stale
• Very large batches/busy system could be hours old

• Staleness OK for some queries, bad for others

Solution: allow queries to access data

before it’s been applied to database

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 11

LazyBase pipeline

http://www.pdl.cmu.edu/ 12

Ingest Sort Merge

Raw Input Sorted Authority
table

Slow, fresh Fast, stale

Client

 Jim Cipar © December 12

Query latency/freshness

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 13

Queries allowing staler results return faster

Insights from LazyBase
• Improving performance can cause staleness

• Many applications tolerate data staleness

• Freshness requirements are important

• Property of query, not data
• Can change over time
• Make them explicit, not implied

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 14

Outline
• Insights from LazyBase
• Machine learning applications
• Lazy writes and initial results
• System design
• Future research

http://www.pdl.cmu.edu/ 15 Jim Cipar © December 12

A typical ML algorithm

http://www.pdl.cmu.edu/ 16

Input data
(small)

 Jim Cipar © December 12

A typical ML algorithm

http://www.pdl.cmu.edu/ 17

Input data
(small)

(1) initialization

Intermediate
Program state

(potentially big)

 Jim Cipar © December 12

A typical ML algorithm

http://www.pdl.cmu.edu/ 18

Input data
(small)

(1) initialization

Intermediate
Program state

(potentially big)

(2) Iterate, many
small updates

 Jim Cipar © December 12

A typical ML algorithm

http://www.pdl.cmu.edu/ 19

Input data
(small)

Output results
(small)

(1) initialization

Intermediate
Program state

(potentially big)

(2) Iterate, many
small updates

(3) Output results
after many iterations

 Jim Cipar © December 12

A typical ML algorithm

http://www.pdl.cmu.edu/ 20

Intermediate
Program state

(potentially big)

(2) Iterate, many
small updates

• Bulk of time spent
in iteration steps

• Performance of
intermediate data
crucial to
performance of
algorithm

 Jim Cipar © December 12

Example: Topic modeling

http://www.pdl.cmu.edu/ 21

Corpus of
documents

 Jim Cipar © December 12

Example: Topic modeling

http://www.pdl.cmu.edu/ 22

Corpus of
documents

Topic modeler Iterate

 Jim Cipar © December 12

Example: Topic modeling

http://www.pdl.cmu.edu/ 23

Corpus of
documents

Topic
mixtures

Topic modeler

 Jim Cipar © December 12

LDA topic modeling
• Assign each word in each document to a topic

• Guided by LDA model and other word assignments

• Continue reassigning until model looks “good”

• Two main data structures
• Topic-word table
• Document-topic table

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 24

Topic-word table
Number of times a word (in any doc) is

associated with a particular topic

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 25

Jobs Economy Obama Romney His Says

Generic 5 1 0 0 51 78
Politics 2 10 105 121 1 2

Finance 231 312 22 3 0 1

Document-topic table
Number of times any word in that

document is associated with a topic

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 26

Generic Politics Finance

Document 1 40 49 11

Document 2 75 12 13

Document 3 20 4 151

LDA iteration step

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 27

Jobs Obama Says
Generic 5 0 78
Politics 2 105 2

Finance 231 22 1

Topic-word

Gen. Pol. Fin.

Doc. 1 40 49 11

Doc. 2 75 12 13

Doc. 3 20 4 151

Document-topic

Document 1
Obama says jobs…

Read document

LDA iteration step

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 28

Jobs Obama Says
Generic 5 0 78
Politics 2 105 2

Finance 231 22 1

Topic-word

Gen. Pol. Fin.

Doc. 1 40 49 11

Doc. 2 75 12 13

Doc. 3 20 4 151

Document-topic

Document 1
Obama says jobs…

For each word,
look at column of
topic-word table

LDA iteration step

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 29

Jobs Obama Says
Generic 5 0 78
Politics 2 105 -1 2

Finance 231 22 +1 1

Topic-word

Gen. Pol. Fin.

Doc. 1 40 49 -1 11 +1

Doc. 2 75 12 13

Doc. 3 20 4 151

Document-topic

Document 1
Obama says jobs…

Potentially assign
word to different

topic

If so, update
tables accordingly

LDA iteration step

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 30

Jobs Obama Says
Generic 5 0 78
Politics 2 105 -1 2

Finance 231 22 +1 1

Topic-word

Gen. Pol. Fin.

Doc. 1 40 49 -1 11 +1

Doc. 2 75 12 13

Doc. 3 20 4 151

Document-topic

Document 1
Obama says jobs…

Move on to next
word and repeat

Parallelizing LDA

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 31

Topic-word

Gen. Pol. Fin.

Doc. 1 40 49 11

Doc. 2 75 12 13

Doc. 3 20 4 151

Document-topic

Doc. 1

Multiple
processes to

speed up
iteration steps

Doc. 2

Doc. 3

Process 1

Process 2

Doc. 4

Jobs Obama Says
Generic 5 0 78
Politics 2 105 2

Finance 231 22 1

Parallelizing LDA

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 32

Topic-word

Gen. Pol. Fin.

Doc. 1 40 49 11

Doc. 2 75 12 13

Doc. 3 20 4 151

Document-topic

Doc. 1

Assign each
document to
a particular

process

Doc. 2

Doc. 3

Doc. 4

Process 1

Process 2
Jobs Obama Says

Generic 5 0 78
Politics 2 105 2

Finance 231 22 1

Parallelizing LDA

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 33

Topic-word

Gen. Pol. Fin.

Doc. 1 40 49 11

Doc. 2 75 12 13

Doc. 3 20 4 151

Document-topic Process can
“own” rows
of doc-topic

table

Jobs Obama Says
Generic 5 0 78
Politics 2 105 2

Finance 231 22 1

Doc. 1

Doc. 2

Doc. 3

Doc. 4

Process 1

Process 2

Parallelizing LDA

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 34

Topic-word

Document-topic
But topic-word
table is shared

by all
processes

Jobs Obama Says
Generic 5 0 78
Politics 2 105 2

Finance 231 22 1

Gen. Pol. Fin.

Doc. 1 40 49 11

Doc. 2 75 12 13

Doc. 3 20 4 151

Doc. 1

Doc. 2

Doc. 3

Doc. 4

Process 1

Process 2

Parallelizing LDA

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 35

Topic-word

Gen. Pol. Fin.

Doc. 1 40 49 11

Doc. 2 75 12 13

Doc. 3 20 4 151

Document-topic

Doc. 1

Doc. 2

Doc. 3

Process 1

Process 2

Doc. 4

Jobs Obama Says
Generic 5 0 78
Politics 2 105 2

Finance 231 22 1

Performance of algorithm depends
on performance of topic-word table!

Other algorithms
• Coordinate descent

• Finding points in multidimensional space
• Each process updates subset of coordinates
• Must read updates from other threads

• K-means

• Grouping points by location
• Processes update subset of points…
• Based on shared grouping information

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 36

(Brief) related work
• GraphLab represents intermediate state as graph

• Each node has local state, update function
• When neighbor state changes, call update function
• Works well when variable interactions are local

• Spark stores large tables in memory
• Tables are updated via bulk operations
• Keep log of operations for fault tolerance
• Replace entire data set at once, not point updates

• Piccolo provides distributed table of values

http://www.pdl.cmu.edu/ 37 Jim Cipar © December 12

Table API (Piccolo, LazyTables)
• Basic operations:

• read, read_row, put

• Table can use one self-commutative update:

http://www.pdl.cmu.edu/ 38

increment(row, col, val) table[row, col] += val

multiply(row, col, val) table[row, col] *= val

update(row, col, val, f) table[row,col] =
 f(table[row, col], val)

 Jim Cipar © December 12

Outline
• Insights from LazyBase
• Machine learning applications
• LazyTables design
• Future research

http://www.pdl.cmu.edu/ 39 Jim Cipar © December 12

System diagram

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 40

Process 1

Process 2

Table server

Table

Read/write

Read/write

Design overview
• Problem: frequent reads and writes to shared data

• Dominate performance of algorithm
• Need very low latency

http://www.pdl.cmu.edu/ 41 Jim Cipar © December 12

Insights from LazyBase
• Improving performance can cause staleness

• Many applications tolerate data staleness

• Freshness requirements are important

• Property of query, not data
• Can change over time
• Make them explicit, not implied

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 42

Insights from LazyBase
• Improving performance can cause staleness

• Many applications tolerate data staleness

• Freshness requirements are important

• Property of query, not data
• Can change over time
• Make them explicit, not implied

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 43

ML algorithms tolerate staleness
• Algorithms are convergent

• Start with “bad” solution
• Iteratively improve solution
• Eventually converge on “good” solution

• If they get thrown off, they can just continue

• Example: coordinate descent

• Finding minimum point in space

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 44

ML algorithms tolerate “errors”

http://www.pdl.cmu.edu/ 45

• Starts with initial guess, iteratively improves
• Eventually converges to “correct” result

If value is off by a bit, algorithm will fix
it later. Small errors make no difference

 Jim Cipar © December 12

Coord. Descent and staleness
• Simulated coordinate descent with stale data

• Two processes, updating X and Y respectively

• Take 5 iterations to propagate between processes

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 46

ML algorithms tolerate staleness

http://www.pdl.cmu.edu/ 47

• Processes don’t get updates immediately
• Shared state converges to correct result

Overshot due to staleness, but
eventually found solution

 Jim Cipar © December 12

Insights from LazyBase
• Improving performance can cause staleness

• Many applications tolerate data staleness

• Freshness requirements are important

• Property of query, not data
• Can change over time
• Make them explicit, not implied

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 48

ML algorithms tolerate staleness

http://www.pdl.cmu.edu/ 49

• Processes don’t get updates immediately
• Shared state converges to correct result

At start, finding good direction is easy
Near end, seeing other updates important

 Jim Cipar © December 12

Specifying freshness
• Each read operation specifies requirement

• E.g. “read row 12 with all updates as of iteration 5”

• If data from all processes is ready, return
• Otherwise wait for other processes to update

• Requires fresher data may wait longer

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 50

Is stale data really a win?
• Stale data can slow down convergence

• Could mean more iterations required to finish

• …but each iteration is much faster

• Likely a “sweet spot” in freshness requirement
• Could depend on input data, algorithm progression…

http://www.pdl.cmu.edu/ 51 Jim Cipar © December 12

Freshness/latency sweet spot

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 52

Fresh, slow Stale, fast

Iterations
per second

Progress
per iteration

Progress
per second

The sweet spot

Insights from LazyBase
• Improving performance can cause staleness

• Many applications tolerate data staleness

• Freshness requirements are important

• Property of query, not data
• Can change over time
• Make them explicit, not implied

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 53

Design overview
• Problem: frequent reads and writes to shared data

• Dominate performance of algorithm
• Need very low latency

• Read solution: Caching

• Reads exhibit locality (set of words in doc. constant)

http://www.pdl.cmu.edu/ 54 Jim Cipar © December 12

Cache requires 2 data structures
• Per-process cache of table rows

• Each row tagged with age of row
• When reading, check age
• Too old freshness miss, re-read row

• Vector clock in table server

• Track what iteration each process is on
• On read, age of data is minimum value in clock
• iterate() operation increments clock for a process

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 55

Adding a cache

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 56

Process 1 Table server

Table

Clock

6 5 9 …

Process 1 Process 1
Cache

Rows
1
4
12
15

Ages
5
2
1
5

Adding a cache

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 57

Process 1 Table server

Table

Clock

6 5 9 …

Process 1 Process 1
Cache

Rows
1
4
12
15

Ages
5
2
1
5

iterate()
7

Adding a cache

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 58

Process 1 Table server

Table

Clock

7 5 9 …

Process 1 Process 1
Cache

Rows
1
4
12
15

Ages
5
2
1
5

read_row(4,fresh=2)
Hits in cache.

Adding a cache

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 59

Process 1 Table server

Table

Clock

7 5 9 …

Process 1 Process 1
Cache

Rows
1
4
12
15

Ages
5
2
1
5

read_row()

read_row(12,fresh=2)
Cache too old: freshness miss

5 1

Design overview
• Problem: frequent reads and writes to shared data

• Dominate performance of algorithm
• Need very low latency

• Read solution: Caching

• Reads exhibit locality (set of words in doc. constant)

• Write solution: Operation logging
• Batch many updates and apply at once

http://www.pdl.cmu.edu/ 60 Jim Cipar © December 12

Oplog data structure
• Log of update operations, not values

• E.g. “add one to row 5, column 2”

• Batch many operations at process

• Send batch on iterate() call

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 61

Adding an oplog

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 62

Process 1 Table server

Table

Clock

6 5 9 …

Process 1 Process 1

Cache

Oplog
row

col inc

Adding an oplog

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 63

Process 1 Table server

Table

Clock

6 5 9 …

Process 1 Process 1

Cache

Oplog
row

5

col
3

inc
1

increment(row 5, col 3, 1)

Adding an oplog

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 64

Process 1 Table server

Table

Clock

6 5 9 …

Process 1 Process 1

Cache

Oplog
row

5
2

col
3
3

inc
1
-1

increment(row 2, col 3, -
1)

Adding an oplog

 Jim Cipar © December 12 http://www.pdl.cmu.edu/ 65

Process 1 Table server

Table

Clock

6 5 9 …

Process 1 Process 1

Cache

Oplog
row

5
2

col
3
3

inc
1
-1

flush()

Initial experiments
• Simple C++ table implementation

• Based on STL map<> data structure
• Get/put, increment/decrement, multiply

• Basic implementation: reader/writer locks
• Lazy implementation

• Queue updates in thread-local storage
• After 1k updates - or flush() - perform bulk

update
• Used actual document classification code

• Latent Dirichlet Allocation algorithm
• Similar in behavior to coordinate descent

http://www.pdl.cmu.edu/ 66 Jim Cipar © December 12

Initial results

http://www.pdl.cmu.edu/ 67

Batching updates improves performance
Locking too expensive for every update

 Jim Cipar © December 12

Outline
• Insights from LazyBase
• Machine learning applications
• LazyTables design
• Future research

http://www.pdl.cmu.edu/ 68 Jim Cipar © December 12

Which algorithms can benefit?
• Does staleness affect some applications more?

• Differences in update rate

• Little benefit to lazy writes

• Differences in freshness requirements
• Lazy writes could be too costly

http://www.pdl.cmu.edu/ 69 Jim Cipar © December 12

Freshness/latency tradeoff

Layers of cache provide tradeoff between
freshness of data and latency of reads

http://www.pdl.cmu.edu/ 70 Jim Cipar © December 12

Conclusions
• LazyTables: shared intermediate state for ML

• High-throughput updates

• Improve performance by allowing stale data
• Extensive use of batching and caching

• Make freshness requirements explicit

• Different requirements for each read operation

http://www.pdl.cmu.edu/ 71 Jim Cipar © December 12

References
• Apache Mahout, http://mahout.apache.org.
• D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
• J. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent

for l1-regularized loss minimization.
• J. Cipar, G. Ganger, K. Keeton, C. B. Morrey, III, C. A. Soules, and A. Veitch.

LazyBase: trading freshness for performance in a scalable database.
• Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.

Graphlab: A new parallel framework for machine learning.
• Y. Low, G. Joseph, K. Aapo, D. Bickson, C. Guestrin, and M. Hellerstein,

Joseph. Distributed GraphLab: A framework for machine learning and data
mining in the cloud.

• R. Power and J. Li. Piccolo: building fast, distributed programs with partitioned
tables.

• M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster comput- ing.

http://www.pdl.cmu.edu/ 72 Jim Cipar © December 12

http://mahout.apache.org

	Exploiting data staleness for high-performance machine learning
	Overview
	Outline
	LazyBase
	Example application
	Example application
	Applications and freshness
	Applications and freshness
	High throughput updates
	Batching and performance
	Batching causes staleness
	LazyBase pipeline
	Query latency/freshness
	Insights from LazyBase
	Outline
	A typical ML algorithm
	A typical ML algorithm
	A typical ML algorithm
	A typical ML algorithm
	A typical ML algorithm
	Example: Topic modeling
	Example: Topic modeling
	Example: Topic modeling
	LDA topic modeling
	Topic-word table
	Document-topic table
	LDA iteration step
	LDA iteration step
	LDA iteration step
	LDA iteration step
	Parallelizing LDA
	Parallelizing LDA
	Parallelizing LDA
	Parallelizing LDA
	Parallelizing LDA
	Other algorithms
	(Brief) related work
	Table API (Piccolo, LazyTables)
	Outline
	System diagram
	Design overview
	Insights from LazyBase
	Insights from LazyBase
	ML algorithms tolerate staleness
	ML algorithms tolerate “errors”
	Coord. Descent and staleness
	ML algorithms tolerate staleness
	Insights from LazyBase
	ML algorithms tolerate staleness
	Specifying freshness
	Is stale data really a win?
	Freshness/latency sweet spot
	Insights from LazyBase
	Design overview
	Cache requires 2 data structures
	Adding a cache
	Adding a cache
	Adding a cache
	Adding a cache
	Design overview
	Oplog data structure
	Adding an oplog
	Adding an oplog
	Adding an oplog
	Adding an oplog
	Initial experiments
	Initial results
	Outline
	Which algorithms can benefit?
	Freshness/latency tradeoff
	Conclusions
	References

