Exploiting data staleness for high-performance machine learning

Jim Cipar

Qirong Ho, Greg Ganger, Eric Xing, Kim Keeton (HP Labs) PARALLEL DATA LABORATORY

Carnegie Mellon University

Overview

- Intermediate data crucial for ML performance
- LazyTables: very fast intermediate data
- Achieve high performance by allowing stale data
	- This is OK for many ML algorithms

Outline

- Insights from LazyBase
- Machine learning applications
- LazyTables design
- Future research

- Database designed for analysis of observations
	- E.g. Information management, social network data
	- Continuous high-throughput updates
- **Key observation:** Applications can use stale data
	- Different queries have different freshness requirements
	- Allowing for staleness can improve performance

Example application

- High bandwidth stream of Tweets
	- 200 million per day
	- Up to 20k per second

Example application

- High bandwidth stream of Tweets
	- 200 million per day
	- Up to 20k per second

•Queries accept different freshness levels WHEN AN EARTHQUAKE HITS. PEOPLE FLOOD THE INTERNET WITH POSTS ABOUT IT-SOME •Freshest: USGS Twitter Earthquake Detector WITHIN 20 OR 30 SECONDS.

- •Fresh: Hot news in last 10 minutes
- •Stale: social network graph analysis

ROBMIES HUGE **EARTHQUAKE HERE!**

•**Freshness depends on query** not data

Applications and freshness

Applications and freshness

High throughput updates

- Must support continuous high-volume update
- Batching: group many updates, apply at once
- **Batching updates provides high performance**
	- Common technique for high throughput
	- Amortize bookkeeping costs for performing updates

Batching and performance

Large batches of updates increase throughput

Batching causes staleness

- Large updates take a long time to process
	- Large batches \rightarrow database is very stale
	- Very large batches/busy system \rightarrow could be hours old
- Staleness OK for some queries, bad for others

Solution: allow queries to access data before it's been applied to database

LazyBase pipeline

Query latency/freshness

Queries allowing staler results return faster

Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
	- Property of query, not data
	- Can change over time
	- Make them explicit, not implied

Outline

- Insights from LazyBase
- Machine learning applications
- Lazy writes and initial results
- System design
- Future research

Input data (small)

http://www.pdl.cmu.edu/ 18

• **Bulk of time spent in iteration steps**

• **Performance of intermediate data crucial to performance of algorithm**

Intermediate Program state (potentially big)

(2) Iterate, many small updates

Example: Topic modeling

documents

Example: Topic modeling

Corpus of documents

Example: Topic modeling

Corpus of documents

LDA topic modeling

- Assign each word in each document to a topic
	- Guided by LDA model and other word assignments
- Continue reassigning until model looks "good"
- Two main data structures
	- Topic-word table
	- Document-topic table

Topic-word table

Number of times a word (in any doc) is associated with a particular topic

Document-topic table

Number of times any word in that document is associated with a topic

Topic-word

Document 1

Obama says jobs…

Read document

Document-topic

Topic-word

Document-topic

Carnegie Mellon Parallel Data Laboratory

Document 1

Obama says jobs…

For each word, look at column of topic-word table

Document-topic

Carnegie Mellon Parallel Data Laboratory

Document 1

Obama says jobs…

Potentially assign word to different topic

If so, update tables accordingly

Jobs Obama Says Generic $\begin{array}{ccc} 5 & 0 & 78 \end{array}$ **Politics** $|2 \t| 105 - 1 |2$ **Finance** $\begin{array}{|c|c|c|c|c|}\n231 & 22 & +1 & 1\n\end{array}$ **Topic-word**

Document-topic

Carnegie Mellon Parallel Data Laboratory

Document 1

Obama **says** jobs…

Move on to next word and repeat

Topic-word Jobs Obama Says Generic 5 0 78 **Politics** $|2 \t| 105 \t| 2$ **Finance** 231 22 1

Document-topic

Topic-word Jobs Obama Says Generic 5 0 78 **Politics** $|2 \t| 105 \t| 2$ **Finance** 231 22 1

Document-topic

Topic-word Jobs Obama Says Generic 5 0 78 **Politics** $|2 \t| 105 \t| 2$ **Finance** 231 22 1

Topic-word Jobs Obama Says Generic 5 0 78 Politics 2 105 2 **Finance** 231 22 1

Document-topic

Other algorithms

- Coordinate descent
	- Finding points in multidimensional space
	- Each process updates subset of coordinates
	- Must read updates from other threads
- K-means
	- Grouping points by location
	- Processes update subset of points…
	- Based on shared grouping information
(Brief) related work

- GraphLab represents intermediate state as graph
	- Each node has local state, update function
	- When neighbor state changes, call update function
	- Works well when variable interactions are local
- Spark stores large tables in memory
	- Tables are updated via bulk operations
	- Keep log of operations for fault tolerance
	- Replace entire data set at once, not point updates
- Piccolo provides distributed table of values

Table API (Piccolo, LazyTables)

- Basic operations:
	- read, read_row, put
- Table can use one self-commutative update:

Outline

- Insights from LazyBase
- Machine learning applications
- LazyTables design
- Future research

System diagram

Design overview

- **Problem**: frequent reads and writes to shared data
	- Dominate performance of algorithm
	- Need very low latency

Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
	- Property of query, not data
	- Can change over time
	- Make them explicit, not implied

Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
	- Property of query, not data
	- Can change over time
	- Make them explicit, not implied

ML algorithms tolerate staleness

- Algorithms are convergent
	- Start with "bad" solution
	- Iteratively improve solution
	- Eventually converge on "good" solution
- If they get thrown off, they can just continue
- Example: coordinate descent
	- Finding minimum point in space

ML algorithms tolerate "errors"

- Starts with initial guess, iteratively improves
- Eventually converges to "correct" result

Coord. Descent and staleness

- Simulated coordinate descent with stale data
- Two processes, updating X and Y respectively
- Take 5 iterations to propagate between processes

ML algorithms tolerate staleness

- Processes don't get updates immediately
- Shared state converges to correct result

Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
	- Property of query, not data
	- Can change over time
	- Make them explicit, not implied

ML algorithms tolerate staleness

At start, finding good direction is easy Near end, seeing other updates important

- Processes don't get updates immediately
- Shared state converges to correct result

30

Specifying freshness

- Each read operation specifies requirement
	- E.g. "read row 12 with all updates as of iteration 5"
- If data from all processes is ready, return
- Otherwise wait for other processes to update
- Requires fresher data \rightarrow may wait longer

Is stale data really a win?

- Stale data can slow down convergence
	- Could mean more iterations required to finish
- …but each iteration is much faster
- Likely a "sweet spot" in freshness requirement
	- Could depend on input data, algorithm progression...

Freshness/latency sweet spot

Fresh, slow Stale, fast

Carnegie Mellon Parallel Data Laboratory

Insights from LazyBase

- Improving performance can cause staleness
- Many applications tolerate data staleness
- Freshness requirements are important
	- Property of query, not data
	- Can change over time
	- Make them explicit, not implied

Design overview

- **Problem**: frequent reads and writes to shared data
	- Dominate performance of algorithm
	- Need very low latency
- **Read solution**: Caching
	- Reads exhibit locality (set of words in doc. constant)

Cache requires 2 data structures

- Per-process cache of table rows
	- Each row tagged with age of row
	- When reading, check age
	- Too old \rightarrow freshness miss, re-read row
- Vector clock in table server
	- Track what iteration each process is on
	- On read, age of data is minimum value in clock
	- iterate() operation increments clock for a process

Carnegie Mellon Parallel Data Laboratory

Carnegie Mellon Parallel Data Laboratory

Design overview

- **Problem**: frequent reads and writes to shared data
	- Dominate performance of algorithm
	- Need very low latency
- **Read solution**: Caching
	- Reads exhibit locality (set of words in doc. constant)
- **Write solution:** Operation logging
	- Batch many updates and apply at once

Oplog data structure

- Log of update operations, not values
	- E.g. "add one to row 5, column 2"
- Batch many operations at process
- Send batch on iterate() call

Carnegie Mellon Parallel Data Laboratory

Carnegie Mellon Parallel Data Laboratory

Parallel Data Laboratory

Initial experiments

- Simple C++ table implementation
	- Based on STL map<> data structure
	- Get/put, increment/decrement, multiply
- Basic implementation: reader/writer locks
- Lazy implementation
	- Queue updates in thread-local storage
	- After 1k updates or f lush() perform bulk update
- Used actual document classification code
	- Latent Dirichlet Allocation algorithm
	- Similar in behavior to coordinate descent

Carnegie Mellon Parallel Data Laboratory

Initial results

Number of cores and threads

Batching updates improves performance Locking too expensive for every update

Outline

- Insights from LazyBase
- Machine learning applications
- LazyTables design
- Future research

Which algorithms can benefit?

- Does staleness affect some applications more?
- Differences in update rate
	- Little benefit to lazy writes
- Differences in freshness requirements
	- Lazy writes could be too costly

Freshness/latency tradeoff

Layers of cache provide tradeoff between freshness of data and latency of reads

Conclusions

- LazyTables: shared intermediate state for ML
	- High-throughput updates
- Improve performance by allowing stale data
	- Extensive use of batching and caching
- Make freshness requirements explicit
	- Different requirements for each read operation

References

- Apache Mahout, [http://mahout.apache.org.](http://mahout.apache.org)
- D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
- J. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-regularized loss minimization.
- J. Cipar, G. Ganger, K. Keeton, C. B. Morrey, III, C. A. Soules, and A. Veitch. LazyBase: trading freshness for performance in a scalable database.
- Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Graphlab: A new parallel framework for machine learning.
- Y. Low, G. Joseph, K. Aapo, D. Bickson, C. Guestrin, and M. Hellerstein, Joseph. Distributed GraphLab: A framework for machine learning and data mining in the cloud.
- R. Power and J. Li. Piccolo: building fast, distributed programs with partitioned tables.
- M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster comput- ing.