We’re still having FAWN

David Andersen, Michael Kaminsky*, Michael A. Kozuch*,
Padmanabhan Pillali* ,Vijay Vasudevan, Amar Phanishayee,
Lawrence Tan, Jason Franklin, lulian Moraru, Sang Kil Cha,
Hyeontaek Lim, Bin Fan, Reinhard Munz, Nathan Wan, Jack
Ferris, Hrishikesh Amur**,Wolfgang Richter, Michael
Freedman™** Wyatt Lloyd™*, Dong Zhou

Carnegie Mellon University *Intel Labs Pittsburgh
** Princeton University *** Georgia Tech

Power limits
computing

Power limits
computing

Power limits
computing

gy =

|5

i

e
-

i 2

Power limits
computing

|000W

=

Servers

Servers

Infrastructure:
PUE
2005: 2-3
2012:~1.1
Leave it to industry 100%

|000W

Servers

Infrastructure:
PUE

2005: 2-3

2012:~1.1

Proportionality

750W

200w

Infrastructure:
PUE

2005: 2-3

2012: ~1.1

Leave it to industry 100% Efficiency

|000W 300W

Proportionality

750W

200w

Infrastructure:
PUE

2005: 2-3

2012:~1.1

Leave it to industry 100% Efficiency

|000WV 300W
Proportionality Combined...
/50w <|100W

200w

Infrastructure:

PUE
2005: 2-3
2012: ~.1

7 o TN
F- 100% Efficiency Y
l

]
@ 300W
T o

~ o> ~ o - ',:f' -
FAWNs
20%

oo

Proportionality

750W

Combined...
<|00W

200w

Example:

.6 GHz Atom Z2460
| GB LPDDR2

Two pillars

® Gigahertz costs twice:
® Once for the switching speed
® Once for the memory wall
® Memory capacity costs (at least) once:

® | onger buses < efficient

/) & B .\

Wlmpy” Nodes

e oo

1.6 GHz Dual-core Atom \
32-160 GB Flash SSD
Only 1 GB DRAM!

|
i
|
!
I
H |
:

“Each decimal order of magnitude increase in parallelism requires a
major redesign and rewrite of parallel code™ - Kathy Yelick

Load Balancing Parallelization

Bigger Clusters

Wimpy Nodes

Hardware

Specificity Memory Capacity

The FAWN Quad of Pain

Load Balancing Parallelization

Bigger Clusters

Wimpy Nodes

Hardware

Specificity Memory Capacity

It's not just masochism

Moore Dennard

BB scoling of Transistor Festure Sizes Over Time Processor Frequency Scaling Over Time

1.0um
3162

0.68 um

0.50 um
1000

0.35 um 'g
& 025um =
£ ci8um i 316
-
K
0.13um E
[*]

90 nm 100

65 nm
45 nm

32 nm

198

(Figures from Danowitz, Kelley, Mao, Stevenson, and Horowitz: CPU DB)

All systems will face this challenge over time

FAVVN:
It started
with a key-value store

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

Dan Wendlandt wrote

have a good one man. hope the facebook TG was fun, the email was
hilarious

Wall-to-Wa Write on Dan's Wa

Patrick Gage Kelley wrote
Oh! birthday!

Wall-to-Wa Write on Patrick's Wal
Corey lohn Ram
lyican Bethenco Ravichan
urt) Jagan Seshadri wrote
Happy birthday Vij! 24 and there's so much more...
Wall-to-Wa Write on Jagan's Wa
_reate a Profile Badge Vish Subramanian wrote
hapy birthday dude, its been awhile!
= Wall-to-Wa Write on Vish's Wall
Y - Bobby Gregg wrote
I A ’.

S hi vijay! i'm super early but i'm bad about checking facebook regularly
‘ nowadays so i wanted to say happy birthday. let's catch up about our
respective grad school woes.

Wall-to-Wa Write on Bobby's Wall

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

Select name,photo from users where uid=513542;

o _.,!F Dan Wendlandt wrote
4 Bl have a good one man. hope the facebook TG was fun, the email was
FZJ I hilarious

g Patrick Gage Kelley wrote
L

J‘ .:; hl bir".‘”?iil}"

sesnadri wrote

Happy birthday Vij! 24 and there's so much more...

1 wrote

| S :) :
hapy birthday dude, its been awhile!

: ' Bobby Gregg wrote

- A

vijay! i'm super early but i'm bad about checking facebook regularly
ij nowadays so i wanted to say happy birthday. let's catch up about our

respective grad school woes.

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

Select name,photo from users where uid=818503;

wrote

Vij! 24 and there's so much more...

wrote

—
hnapy birthday dude, its been awhile
=y

wrote

vijay! i'm super early but i'm bad about checking facebook regularly
‘i nowadays so | wanted to say happy birthday. let's catch up about our

respective grad school woes.

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

1“'
.,‘; Dan Wendlandt wrote
Ll "y

13

t{.bé

nave a good one man. hope the facebook TG was fun, the email was

niarious

S Patrick Gage Kelley wrote

: > -
J‘ Oh! birthday!

— ‘ ,
- . » | ¢ " S " 4 \‘-‘rOtC

; 'S SO much more...
‘ Select name,photo from users where uid=468883; |, R
1 wrote

| S .) :
hapy birthday dude, its been awhile!

i ' Bobby Gregg wrote

. 11

vijay! i'm super early but i'm bad about checking facebook regularly
‘] nowadays so i wanted to say happy birthday. let's catch up about our

respective grad school woes.

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

‘i"‘r‘:)tt
e
napy oirtnaay di
wrote
n 1 1 SUpP¢ \Irly but I'm bad about chef g ebo egularly
‘» N SO | W to \appy birtha t's catch up about ou
_
espectn I’J"L‘Ij (
* AL

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

Select wallpost from posts where pid=89888333522;

.
| y -
. L g .
4 ' B :
poe n _'_. . d
» < p _—
y as 1

here 111d= 24111;

Select name,photo from users where uid=124566;

Select wallpost from posts where pid=12314144887;

‘ Select name,photo from users where uid=357845; I

12

FAWN-DS

key-value backend store
one node
optimized for wimpy
nodes and flash

FAWN-DS FAWN-KV

A cluster-distributed
key-value store
Minimizes work on churn

Fawn-KV

FAWN-DS FAWN-KV SILT

backend store
hyper-optimized
for low DRAM

and large flash

Fawn-KV

FAWN-DS FAWN-KV SILT Small Cache

Provable load
balancing Cache SILT

using a tiny cache

FAWN-DS FAWN-KY SILT Small Cache Cuckoo

SILT
Parallel, fast,
memory-efficient Cuckoo SILT
memcached Cache
using optimistic
cuckoo hashing SILT

After first victory,
moved to Atom+SSD

Geode 4GB CF Card
500Mhz 256MB ~2k IOPS
' 6x l 30-60x
Atom
|20GB SSD
|.6 Ghz 2GB ~60k 1OPS

single-core

FAWN-DS FAWN-KVY Small Cache Cuckoo

Fawn-DS

Fawn-KV Fawn-DS

FAWN-DS FAWN-KY SILT Small Cache Cuckoo

backend store
hyper-optimized
for low DRAM

and large flash

SILT

Fawn-KV

SILT

SILT

Flash Must be Used Carefully

Random reads / sec 48,000

= Fast, but not THAT fast

Flash Must be Used Carefully

Random reads / sec 48,000
= Fast, but not THAT fast

183

— Space is precious

Flash Must be Used Carefully

Random reads / sec 48,000
= Fast, but not THAT fast

183

— Space is precious

Another long-standing problem:
random writes are slow and bad for flash life (wearout)

Three Metrics to Minimize

= Index size per entry

* |deally O bytes/entry (no memory overhead)

Three Metrics to Minimize

VUl p e ez e k| = Index size per entry

* |deally O bytes/entry (no memory overhead)

SR IE g il ster s | = Flash reads per query

e Limits query throughput
* |deally 1 (no wasted flash reads)

Three Metrics to Minimize

VUl p e ez e k| = Index size per entry

* |deally O bytes/entry (no memory overhead)

SR IE g il ster s | = Flash reads per query
e Limits query throughput
* |deally 1 (no wasted flash reads)

T e o) M = Flash writes per entry

e Limits insert throughput
* Also reduces flash life expectancy
 Must be small enough for flash to last a few years

Read amplification

0 2 4 6 3 10 12 14

Memory overhead s U TET LY.

Read amplification

6 --
4 HashCache(2009)
FIashStore (2010)
? ' FAWN DS (2009)
O
O .
0 2 4 6 3 10 12 14

Memory overhead K 1ET LY,

Read amplification

6 ---
O SklmpyStash (2011) | | |
a HashCache (2009) S
FIashStore (2010) I
2 ' FAWN DS (2009)
O
0 .
0 2 4 6 3 10 12 14

Memory overheads Bl i LRI

FAWN-DS
FlashStore

SkimpyStash HashCache

(
‘" X
w’”—h‘_‘.

Memory efficiency -High performance

(static) “External Dictionary”

DRAM Flash
Index Data

|] 1]

* Prior state of the art: “EPH”: ~3.8 bits/entry
* Ours: Entropy-coded tries, ~2.5 bits/entry

* I[mportant considerations:
e Construction speed; query speed
* Aw, it’s read-only... [need a system; built it]

K queries per second

60
50
40
30
20
10

Workload: 90% GET (100~ M keys) + 10% PUT

. Merge/conversion interval | N
Throughput — | &l
0 5 10 15 20 25

Elapsed time (min)

Caveat: Not on wimpies. Still working on reducing CPU cost! :-)

30

And now... Load imbalance

* Distributed key-value system

Backendl

22

And now... Load imbalance

* Distributed key-value sym

Backendl

\\ >
LS Y /

22

And now... Load imbalance

* Distributed key-value sym !

Backendl —" 3 /

And now... Load imbalance

* Distributed key-value sym !

Backendl

\

(OS5 /

Backend2

\“ -
o /

Back.. 85

\\ :
o /

Back.. 88

\" =
o /

22

* Distributed key-value sym

1.

And now... Load imbalance

get (key)

Backendl

<

\

(OS5 /

Backend2

\“ -
o /

Back.. 85

\\ :
o /

Back.. 88

\" =
o /

22

* Distributed key-value sym

1.

And now... Load imbalance

get (key)

2. BackendID=hash (key)

Backendl

<

\

(OS5 /

Backend2

Back.. 85

Back.. 88

22

And now... Load imbalance

* Distributed key-value sym !

Backendl — o /

Backend2 (—— ;
~

3. val=lookup (key)

1. get(key)

2. BackendID=hash (key)

Back.. 85 \‘\: /

Back.. 88 \\ /

22

And now... Load imbalance

* Distributed key-value sym

1. get(key)

4. return val

2. BackendID=hash (key)

<

Backendl

\

(OS5 /

Backend2

-\“ -
oS /

3. val=lookup (key)

Back.. 85

\\ '
o /

Back.. 88

\\.:/ |

22

And now... Load imbalance

* Distributed key-value sym !

Backendl

S

10,000 queries/sec

1. get(key)

4. return val

2. BackendID=hash (key)

Backend2

3. val=lookup (key)

Back.. 85

Back.. 88

22

And now... Load imbalance

* Distributed key-value sym !

Backendl (—"
NG

10,000 queries/sec

SLA: 850,000 queries/sec

1. get(key)

4. return val

2. BackendID=hash (key)

3. val=lookup (key)

Backend2 (——

Back.. 85 <\‘\: /

22

(KQPS)

Overall throughput

Measured tput on FAWN testbed

1000 .
uniform
Zipf (1.01) ---->----
adversarial -
800
600
400
200
0

10 20 30 40 50 60 70 80 90 100

n: number of nodes

1000

800

600

400

Overall throughput (KQPS)

200

" uniform ——
Zipf (1.01) -
adversarial ¥

10 20 30

n:

Queries

40 50 60 70 80 90

number of nodes

100

Backendl

Backend?2

BackendS8

Backend8

.- /'

24

1000 r r r r

uniform —+—
Zipf (1.01) ----%----
adversarial - SRt
800

600

400

200

Overall throughput (KQPS)

10 20 30 40

50

60 70 80

n: number of nodes

Queries

cache

90 100

How many items to cache?

Backendl

Backend2

BackendS8

Backend8

24

small/fast cache is enough!

Queries

cache

We prove that, for n nodes
- Only need to cache O(n log n) most

popular entries
- worst case perf. =
(1-¢€)*n *single node capacity

25

small/fast cache is enough!

E.g., for 1KB (k,v) pair, 85 nodes,
3MB needed, fitting in CPU L3 cache

Queries

cache

We prove that, for n nodes
- Only need to cache O(n log n) most

popular entries
- worst case perf. =
(1-¢€)*n *single node capacity

25

Cache forces near-uniform dist.

Popularity Cached Keys Uncached keys

KeyID

Cache forces near-uniform dist.

Popularity Cached Keys Uncached keys

KeyID

Cache forces near-uniform dist.

Popularity Cached Keys Uncached keys

KeyID

Cache forces near-uniform dist.

Popularity Cached Keys Uncached keys

KeyID

Worst case? Now best case

1000 L] L] L] L] L] L] L] L] L] L)
uniform —— 1000 'X

- Zipf (1.01) - =

g adversarial - L)

o 800 S 800

M ¥

§4 600 g

< 24 600

o o

= 3

O 0

H G

5 400 ﬁ 400

—
—

< 2

4 200 3 200

3 > uniform —+—
© Zipf (1.01) ===

0 0 .]]] adlversla.ria:.L *.

10 20 30 40 50 60 70 80 90 100

n: number of nodes
n: number of nodes

10 20 30 40 50 60 70 80 90 100

Thus...

FAWN-DS FAWN-KY SILT Small Cache Cuckoo

“Wimpy” servers

“Brawny” server SILT

‘ ' Cache SILT
SILT

FAWN-DS FAWN-KY SILT Small Cache Cuckoo

“Wimpy” servers

“Brawny” server SILT

» SILT
Insanely Fast

Cache SILT

Optimistic Cuckoo
Hashing

Hashing again

® Well known, old technique, nothing new....
right?

30

Memory efficiency vs
speed

Linear Probing Chaining
key | dat A X N
Key Key8
Dat Dat8
key3 | dat3

Slow: Pointer chasing
Overhead: Pointer space

key2 | dat2

Wastes 50% of slots .

Cuckoo Hashing

key
dat

key key key key
dat dat dat dat
key
dat

tem \
key key
dat dat

Uses 93%
of slots

Fast, compact, butn... Single threaded!

Optimistic Cuckoo

® Multiple reader, lock-free, single-writer
® Applied in Memcached - Huge speedup
® (Talk to Bin @ posters!)

MemC3
4.5 - - ; € —
4 . .
3.5 //
3 / our memcached + sys tuning —+—
_— e e e hancached
5

Millions of Regs/Sec

Threads

33

FAWN-DS FAWN-KY SILT Small Cache Cuckoo

«¢ o ”»
Wl m Py Servers [FAWN, SOSP 2009]

“Brawny” server SILT

» Insanely SILT
« Fast Cache
SILT

O(N IOg N)[““““ Il cache” socc 201 1]

[SILT, SOSP 201 1]

Entropy-coded tries

[SILT + under submission]

Multi-reader
parallel cuckoo
has h i ng [under submission]

Partial-key cuckoo hashing

Cuckoo filter

Moore Dennard

Processor Frequency Scaling Over Time

I Scaling of Transistor Feature Sizes Over Time

1.5 um 10000

1.0um
3162

0.68 um

0.50um
- 1000
0.35um §
& 025um T
é 0.18um % 316
< 013um Z
o 100
90 nm
65 nm
45 nm 32
32 nm
10
198

198

highly parallel, lower-GHz, (memory-
constrained?):

Architectures, algorithms, and programming

