We're still having FAWN

David Andersen, Michael Kaminsky*, Michael A. Kozuch*, Padmanabhan Pillali*, Vijay Vasudevan, Amar Phanishayee, Lawrence Tan, Jason Franklin, Iulian Moraru, Sang Kil Cha, Hyeontaek Lim, Bin Fan, Reinhard Munz, Nathan Wan, Jack Ferris, Hrishikesh Amur**, Wolfgang Richter, Michael Freedman***, Wyatt Lloyd***, Dong Zhou

Carnegie Mellon University

** Princeton University

*Intel Labs Pittsburgh *** Georgia Tech

Example:

I.6 GHz Atom Z2460

I GB LPDDR2

Two pillars

- Gigahertz costs twice:
 - Once for the switching speed
 - Once for the memory wall
- Memory capacity costs (at least) once:
 - Longer buses < efficient

"Wimpy" Nodes

Load Balancing

Parallelization

Bigger Clusters

Wimpy Nodes

Hardware Specificity

Memory Capacity

The FAWN Quad of Pain

Load Balancing

Parallelization

Bigger Clusters

Wimpy Nodes

Hardware Specificity

Memory Capacity

It's not just masochism

Moore

Dennard

(Figures from Danowitz, Kelley, Mao, Stevenson, and Horowitz: CPU DB)

All systems will face this challenge over time

FAWN: It started with a key-value store

99 friends

See All

Carsten Varming

Arvind Tsentsiper Chari

Corey lyican

John Bethenco urt

Ram Ravichan dran

Create a Profile Badge

Sep 21

Dan Wendlandt wrote at 6:47pm

have a good one man. hope the facebook TG was fun, the email was hilarious

Wall-to-Wall - Write on Dan's Wall

Patrick Gage Kelley wrote at 2:42pm

Oh! birthday!

Wall-to-Wall - Write on Patrick's Wall

Jagan Seshadri wrote at 1:50pm

Happy birthday Vij! 24 and there's so much more...

Wall-to-Wall - Write on Jagan's Wall

Vish Subramanian wrote at 3:48am

hapy birthday dude, its been awhile!

Wall-to-Wall - Write on Vish's Wall

Sep 19

Bobby Gregg wrote at 2:22pm

hi vijay! i'm super early but i'm bad about checking facebook regularly nowadays so i wanted to say happy birthday. let's catch up about our respective grad school woes.

Wall-to-Wall - Write on Bobby's Wall

Select name, photo from users where uid=513542;

99 friends

Varming

Arvind Tsentsiper Chari

Ram

dran

Ravichan

Corey lyican

John Bethenco urt

Dan Wendlandt wrote at 6:47pm

have a good one man. hope the facebook TG was fun, the email was hilarious

Wall-to-Wall - Write on Dan's Wall

Patrick Gage Kelley wrote at 2:42pm

Oh! birthday!

Wall-to-Wall - Write on Patrick's Wall

Jagan Seshadri wrote at 1:50pm

Happy birthday Vij! 24 and there's so much more...

Wall-to-Wall - Write on Jagan's Wall

Create a Profile Badge

Vish Subramanian wrote at 3:48am

hapy birthday dude, its been awhile!

Wall-to-Wall - Write on Vish's Wall

Sep 19

Bobby Gregg wrote at 2:22pm

hi vijay! i'm super early but i'm bad about checking facebook regularly nowadays so i wanted to say happy birthday. let's catch up about our respective grad school woes.

Wall-to-Wall - Write on Bobby's Wall

Create a Profile Badge

Vish Subramanian wrote at 3:48am hapy birthday dude, its been awhile! Wall-to-Wall - Write on Vish's Wall

Sep 19

Bobby Gregg wrote at 2:22pm

hi vijay! i'm super early but i'm bad about checking facebook regularly nowadays so i wanted to say happy birthday. let's catch up about our respective grad school woes.

Wall-to-Wall - Write on Bobby's Wall

12

Wall-to-Wall - Write on Bobby's Wall

respective grad school woes.

FAWN-DS

key-value backend store one node optimized for wimpy nodes and flash

Fawn-DS

FAWN-DS FAWN-KV

A cluster-distributed key-value store
Minimizes work on churn

Fawn-KV

Fawn-DS

Fawn-DS

Fawn-DS

FAWN-DS FAWN-KV SILT

backend store
hyper-optimized
for low DRAM
and large flash

Fawn-KV

SILT

SILT

FAWN-DS FAWN-KV SILT Small Cache

Provable load balancing using a tiny cache

Cache

SILT

SILT

FAWN-DS FAWN-KV SILT Small Cache Cuckoo

Parallel, fast, memory-efficient memcached using optimistic cuckoo hashing

Cuckoo Cache SILT

SILT

After first victory, moved to Atom+SSD

Small Cache Cuckoo

Fawn-DS

Fawn-KV

Fawn-DS

Fawn-DS

FAWN-DS FAWN-KV SILT Small Cache Cuckoo

backend store
hyper-optimized
for low DRAM
and large flash

Fawn-KV

SILT

SILT

Flash Must be Used Carefully

Random reads / sec

48,000

Fast, but not <u>THAT</u> fast

Flash Must be Used Carefully

Random reads / sec 48,000

→ Fast, but not THAT fast

\$ / GB 1.83

→ Space is precious

Flash Must be Used Carefully

Another long-standing problem: random writes are slow and bad for flash life (wearout)

Three Metrics to Minimize

Memory overhead = Index size per entry

• Ideally 0 bytes/entry (no memory overhead)

Three Metrics to Minimize

Memory overhead = Index size per entry

Ideally 0 bytes/entry (no memory overhead)

Read amplification = Flash reads per query

- Limits query throughput
- Ideally 1 (no wasted flash reads)

Three Metrics to Minimize

Memory overhead = Index size per entry

Ideally 0 bytes/entry (no memory overhead)

Read amplification = Flash reads per query

- Limits query throughput
- Ideally 1 (no wasted flash reads)

Write amplification = Flash writes per entry

- Limits insert throughput
- Also reduces flash life expectancy
 - Must be small enough for flash to last a few years

Read amplification

Memory overhead (bytes/entry)

Read amplification

Read amplification

(static) "External Dictionary"

- Prior state of the art: "EPH": ~3.8 bits/entry
- Ours: Entropy-coded tries, ~2.5 bits/entry
- Important considerations:
 - Construction speed; query speed
 - Aw, it's read-only... [need a system; built it]

Caveat: Not on wimpies. Still working on reducing CPU cost! :-)

Measured tput on FAWN testbed

small/fast cache is enough!

small/fast cache is enough!

Worst case? Now best case

Thus...

FAWN-DS FAWN-KV SILT Small Cache Cuckoo

"Wimpy" servers

FAWN-DS FAWN-KV SILT Small Cache Cuckoo

"Wimpy" servers

Optimistic Cuckoo Hashing

Hashing again

 Well known, old technique, nothing new.... right?

Memory efficiency vs speed

Linear Probing

key	dat
key3	dat3
key2	dat2

Chaining

Wastes 50% of slots

Cuckoo Hashing

Uses 93% of slots

Fast, compact, but ... Single threaded!

Optimistic Cuckoo

- Multiple reader, lock-free, single-writer
- Applied in Memcached Huge speedup
- (Talk to Bin @ posters! :)

FAWN-DS FAWN-KV SILT Small Cache Cuckoo

"Wimpy" servers [FAWN, SOSP 2009]

"Brawny" server

SILT

SILT

SILT

[SILT, SOSP 2011]

O(N log N) ["small cache" socc 2011]

Multi-reader parallel cuckoo hashing

Entropy-coded tries [SILT + under submission]

Partial-key cuckoo hashing Cuckoo filter

Dennard

highly parallel, lower-GHz, (memory-constrained?):

Architectures, algorithms, and programming