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Data Analytics Clusters 
 

• Data analytics frameworks are an important 
driver for modern Internet services 
– E.g., MapReduce, Dryad, Hadoop 
– Jobs are parallel and data-intensive 

 

• Jobs sizes follow the power-law [HotOS’11] 
– 92% of jobs at FB’s Hadoop cluster can fit all their 

data in memory 



Cache the data to speed up jobs 
 

• Falling memory prices 
– 64GB/machine at FB in Aug 2011, 192GB/machine 

not uncommon now 
 

• Memory utilization often low 
– Analyzed Hadoop jobs in Facebook’s production 

cluster 
– 19% median memory utilization (95th-tile 42%)  



We built a memory cache… 

• File cache in memory on top of HDFS 
– Cache input data of jobs (accessed by map tasks) 
 

• Schedule map tasks for memory locality 
 

• Simple cache replacement policies 
– Least Recently Used (LRU) and Least Frequently 

Used (LFU) 

 



We built a memory cache… 

• Replayed the Facebook trace of Hadoop jobs 
• Jobs sped up by only 10%, hit-ratio of 47% (for 

LFU)  
• Optimal hit-ratio (Belady’s MIN Oracle) 

– Hit-ratio 63% 
– Completion time speedup 13% 

How can we make caching significantly 
speedup jobs? 



Parallel jobs require a new class of 
caching algorithms 



Parallel Jobs 

 Tasks of small jobs run simultaneously in a wave 
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All-or-nothing for multi-waved jobs 
 Large jobs run tasks in multiple waves  

– Number of tasks is larger than number of slots 
– Wave-width: Number of parallel tasks of a job 
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All-or-nothing for multi-waved jobs 
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 Large jobs run tasks in multiple waves  
– Number of tasks is larger than number of slots 
– Wave-width: Number of parallel tasks of a job 

 



All-or-nothing for multi-waved jobs 
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Cache at the wave-
width granularity 

 Large jobs run tasks in multiple waves  
– Number of tasks is larger than number of slots 
– Wave-width: Number of parallel tasks of a job 

 



How to evict from cache? 
 View at the granularity of a job’s input (file) 
 Focus evictions on incompletely cached waves– Sticky 

Policy 
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Which file should be evicted? 

Depends on metric to optimize: 
 

• User centric metric 
– Completion time of jobs 

 

• System centric metric 
– Utilization of the cluster 

What are the eviction policies for these metrics? 



Reduction in Completion Time 
• Idealized model for job: 

– Wave-width for job: W 

– Frequency predicts future access: F 

– Data read is proportional to task length: D 

– Speedup factor for cached tasks: µ 

time 

W 

D 

• Cost of caching:   W D 
• Benefit of caching:   µD F 
• Benefit/cost:   µF/W 

Completion Time of Job: frequency/wave-width 



How to estimate W for a job? 
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• Use the size of a file as a proxy for wave-width 
– NSDI paper explains sophisticated approximation 



Improvement in Utilization 
• Idealized model for job: 

– Wave-width for job: W 

– Frequency predicts future access: F 

– Data read is proportional to task length: D 

– Speedup factor for cached tasks: µ 
 • Cost of caching:  W D 

• Benefit of caching:  W µD F 
• Benefit/cost:  µF 

Utilization of job: frequency 
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Isn’t this just Least Frequently Used? 
• All-or-nothing property matters for utilization 
• Tasks of different phases overlap 

– Reduce tasks start before all map tasks finish (to 
overlap communication) 
 

All-or-
nothing   

No wastage! 



Cache Eviction Policies 

• Completion time policy: 
– Evict from file with lowest (frequency/wave-width) 
– Sticky: fully evict file before going to next (all-or-

nothing) 
 

• Utilization policy: 
– Evict from file with the lowest frequency 
– Sticky: fully evict file before going to next (all-or-

nothing) 

LIFE 

LFU-F 



How do we achieve the sticky policy? 
 
• Caches are distributed  
• Blocks of files are spread across different 

machines 
• Coordination 

– Global view of all the caches 
– …which blocks to evict (sticky policy) 
– …where to schedule tasks (memory locality) 

 



PA   Man: Centralized Coordination 
Global view 



Evaluation Setup 

• Workload derived from Facebook & Bing traces 
– FB: 3500 node Hadoop cluster, 375K jobs, 1 month 
– Bing: 1000’s of nodes Dryad cluster, 200K jobs, 6 weeks 

 
• Prototype in conjunction with HDFS 
• Experiments on 100-node EC2 cluster 

– Cache of 20GB per machine 
 

• Simulations 
– Replay of entire traces 



Replacement 
Policy 

Reduction in average 
completion time (%) 

Hit-Ratio (%) 

LRU 9% 33% 
LFU 10% 48% 
MIN 13% 63% 
LIFE 53% 45% 

Reduction in Completion Time 

Sticky Policy 



small jobs: largest 
improvement under LIFE 

Which jobs are sped up? 

Small jobs have lower wave-width 

Power law in job sizes  there is space for large jobs too 



Improvement in Utilization 

Replacement 
Policy 

Improvement in 
utilization (%) 

LRU 13% 
LFU 46% 
MIN 51% 

LFU-F 54% 
Sticky Policy 



What if we had an oracle? 

• Optimal Cache Replacement 
– LP: Minimize average completion 
– 10% improvement in average completion time 

 
• Cache prior to first access 

– One third of tasks read singly-accessed data 
– 27% improvement in average completion time 

 
 

Pre-fetch & Pre-replace: Adds oracle capability to 
PACMan  87% improvement 



Related Work 

• In-memory computation frameworks [e.g., Spark, 
Piccolo, Twister] 
– Mediates cache access across jobs 

 
• Memory Storage Systems [e.g., RAMCloud] 

– Data-intensive clusters cannot fit all data in memory; 
200x more storage on disk than available memory 
 

• Global Memory Systems [e.g., GMS, NOW] 
– Does not replace based on job-level granularity 



 onclusions 
• All-or-nothing property of parallel jobs 

– Cache all of the inputs of a job 
 

 
 
 

• PA   Man: Coordinated Cache Management 
– Sticky policy: Evict from incomplete inputs 
 

• LIFE for completion time, LFU-F for utilization 
• Jobs are 53% faster, cluster utilization improves by 54% 
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