
PA Man
Coordinated Memory Caching for Parallel Jobs

Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang,
Dhruba Borthakur, Srikanth Kandula,

Scott Shenker, Ion Stoica

Data Analytics Clusters

• Data analytics frameworks are an important
driver for modern Internet services
– E.g., MapReduce, Dryad, Hadoop
– Jobs are parallel and data-intensive

• Jobs sizes follow the power-law [HotOS’11]
– 92% of jobs at FB’s Hadoop cluster can fit all their

data in memory

Cache the data to speed up jobs

• Falling memory prices
– 64GB/machine at FB in Aug 2011, 192GB/machine

not uncommon now

• Memory utilization often low
– Analyzed Hadoop jobs in Facebook’s production

cluster
– 19% median memory utilization (95th-tile 42%)

We built a memory cache…

• File cache in memory on top of HDFS
– Cache input data of jobs (accessed by map tasks)

• Schedule map tasks for memory locality

• Simple cache replacement policies
– Least Recently Used (LRU) and Least Frequently

Used (LFU)

We built a memory cache…

• Replayed the Facebook trace of Hadoop jobs
• Jobs sped up by only 10%, hit-ratio of 47% (for

LFU) 
• Optimal hit-ratio (Belady’s MIN Oracle)

– Hit-ratio 63%
– Completion time speedup 13%

How can we make caching significantly
speedup jobs?

Parallel jobs require a new class of
caching algorithms

Parallel Jobs

 Tasks of small jobs run simultaneously in a wave

slot2

slot1

time
completion

time

slot2

slot1

time
completion

time

Task duration
(uncached input)

Task duration
(cached input)

All-or-nothing: Unless all inputs are cached,
there is no benefit

slot2

slot1

time
completion

time

All-or-nothing for multi-waved jobs
 Large jobs run tasks in multiple waves

– Number of tasks is larger than number of slots
– Wave-width: Number of parallel tasks of a job

time

slot5

slot4

slot3

slot2

slot1

completion time

All-or-nothing for multi-waved jobs

time

slot5

slot4

slot3

slot2

slot1

completion time

 Large jobs run tasks in multiple waves
– Number of tasks is larger than number of slots
– Wave-width: Number of parallel tasks of a job

All-or-nothing for multi-waved jobs

time

slot5

slot4

slot3

slot2

slot1

completion time

Cache at the wave-
width granularity

 Large jobs run tasks in multiple waves
– Number of tasks is larger than number of slots
– Wave-width: Number of parallel tasks of a job

How to evict from cache?
 View at the granularity of a job’s input (file)
 Focus evictions on incompletely cached waves– Sticky

Policy

slot1

slot2

slot3

slot4

slot5

slot6

slot7
slot8

completion

Hit-ratio: 75%
Job 1 speeds up

Job 1

Job 2

With
Sticky
Policy

slot1

slot2

slot3

slot4

slot5

slot6
a

slot7

slot8

completion

Hit-ratio: 75%
No speed-up of jobs

Job 1

Job 2

Task duration
(uncached input)

Task duration
(cached input)

Without
Sticky
Policy

Which file should be evicted?

Depends on metric to optimize:

• User centric metric
– Completion time of jobs

• System centric metric
– Utilization of the cluster

What are the eviction policies for these metrics?

Reduction in Completion Time
• Idealized model for job:

– Wave-width for job: W

– Frequency predicts future access: F

– Data read is proportional to task length: D

– Speedup factor for cached tasks: µ

time

W

D

• Cost of caching: W D
• Benefit of caching: µD F
• Benefit/cost: µF/W

Completion Time of Job: frequency/wave-width

How to estimate W for a job?

Job size W
av

e-
w

id
th

 (
sl

ot
s)

• Use the size of a file as a proxy for wave-width
– NSDI paper explains sophisticated approximation

Improvement in Utilization
• Idealized model for job:

– Wave-width for job: W

– Frequency predicts future access: F

– Data read is proportional to task length: D

– Speedup factor for cached tasks: µ
 • Cost of caching: W D

• Benefit of caching: W µD F
• Benefit/cost: µF

Utilization of job: frequency

time

W

D

Isn’t this just Least Frequently Used?
• All-or-nothing property matters for utilization
• Tasks of different phases overlap

– Reduce tasks start before all map tasks finish (to
overlap communication)

All-or-
nothing 

No wastage!

Cache Eviction Policies

• Completion time policy:
– Evict from file with lowest (frequency/wave-width)
– Sticky: fully evict file before going to next (all-or-

nothing)

• Utilization policy:
– Evict from file with the lowest frequency
– Sticky: fully evict file before going to next (all-or-

nothing)

LIFE

LFU-F

How do we achieve the sticky policy?

• Caches are distributed
• Blocks of files are spread across different

machines
• Coordination

– Global view of all the caches
– …which blocks to evict (sticky policy)
– …where to schedule tasks (memory locality)

PA Man: Centralized Coordination
Global view

Evaluation Setup

• Workload derived from Facebook & Bing traces
– FB: 3500 node Hadoop cluster, 375K jobs, 1 month
– Bing: 1000’s of nodes Dryad cluster, 200K jobs, 6 weeks

• Prototype in conjunction with HDFS
• Experiments on 100-node EC2 cluster

– Cache of 20GB per machine

• Simulations
– Replay of entire traces

Replacement
Policy

Reduction in average
completion time (%)

Hit-Ratio (%)

LRU 9% 33%
LFU 10% 48%
MIN 13% 63%
LIFE 53% 45%

Reduction in Completion Time

Sticky Policy

small jobs: largest
improvement under LIFE

Which jobs are sped up?

Small jobs have lower wave-width

Power law in job sizes  there is space for large jobs too

Improvement in Utilization

Replacement
Policy

Improvement in
utilization (%)

LRU 13%
LFU 46%
MIN 51%

LFU-F 54%
Sticky Policy

What if we had an oracle?

• Optimal Cache Replacement
– LP: Minimize average completion
– 10% improvement in average completion time

• Cache prior to first access

– One third of tasks read singly-accessed data
– 27% improvement in average completion time

Pre-fetch & Pre-replace: Adds oracle capability to
PACMan  87% improvement

Related Work

• In-memory computation frameworks [e.g., Spark,
Piccolo, Twister]
– Mediates cache access across jobs

• Memory Storage Systems [e.g., RAMCloud]

– Data-intensive clusters cannot fit all data in memory;
200x more storage on disk than available memory

• Global Memory Systems [e.g., GMS, NOW]
– Does not replace based on job-level granularity

 onclusions
• All-or-nothing property of parallel jobs

– Cache all of the inputs of a job

• PA Man: Coordinated Cache Management
– Sticky policy: Evict from incomplete inputs

• LIFE for completion time, LFU-F for utilization
• Jobs are 53% faster, cluster utilization improves by 54%

	PA Man �Coordinated Memory Caching for Parallel Jobs
	Data Analytics Clusters
	Cache the data to speed up jobs
	We built a memory cache…
	We built a memory cache…
	Parallel jobs require a new class of caching algorithms
	Parallel Jobs
	All-or-nothing for multi-waved jobs
	All-or-nothing for multi-waved jobs
	All-or-nothing for multi-waved jobs
	How to evict from cache?
	Which file should be evicted?
	Reduction in Completion Time
	How to estimate W for a job?
	Improvement in Utilization
	Isn’t this just Least Frequently Used?
	Cache Eviction Policies
	How do we achieve the sticky policy?
	PA Man: Centralized Coordination
	Evaluation Setup
	Reduction in Completion Time
	Which jobs are sped up?
	Improvement in Utilization
	What if we had an oracle?
	Related Work
	 onclusions

