Memory-Efficient
GroupBy-Aggregate with
Compressed Buffer Trees

Hrishikesh Amur
Karsten Schwan
Georgia Tech.

Wolf Richter
David G.Andersen
Athula Balachandran
Erik Zawadzki
Carnegie Melion

Michael Kaminsky
Intel Labs.

eeeeeeeeeeeeeeeeeeeee

2

Motivation

Increasing cost of memory

Importance of GroupBy-Aggregate

eeeeeeeeeeeeeeeeeeeee

Need for Memory
Efficiency

eeeeeeeeeeeeeeeeeeeee

4

Decreasing memory capacity
per core

1000
—— #Core
= DRAM
100 -
>
=
O
©
o
T 10 o
2 -~ -
e
@©
)
11* ¢
N N N N N N N N N N N N N N N
@) (@) @) @) @) @) @) (@) @) (@) @) @) @) @) o
S &0 & o & © oo =2 = =2 =D =D 4D D I
w 1N n (@) N oo O (@) — N w N n (@) N

1. Disaggregated Memory for Expansion and Sharing in Blade Servers, Lim et al., ISCA'09

Monday, December 3, 2012

DRAM is expensive

Standard (S) ‘

® CPU
Standard (L) ‘ ® Memory
Hi-memory (XXL) ‘ g g;::g:

Hi-CPU (M) ol
Amazon EC2 proportional resource cost

eeeeeeeeeeeeeeeeeeeee

GroupBy-Aggregate

eeeeeeeeeeeeeeeeeeeee

GroupBy-Aggregate

GroupBy Aggregate

B key-value pair

eeeeeeeeeeeeeeeeeeeee

GroupBy-Aggregate

GroupBy Aggregate

B key-value pair

eeeeeeeeeeeeeeeeeeeee

GroupBy-Aggregate

GroupBy Aggregate

B key-value pair

eeeeeeeeeeeeeeeeeeeee

MapReduce

o
8

eeeeeeeeeeeeeeeeeeeee

MapReduce

eeeeeeeeeeeeeeeeeeeee

MapReduce

MapReduce

eeeeeeeeeeeeeeeeeeeee

MapReduce

MapReduce

eeeeeeeeeeeeeeeeeeeee

MapReduce

5 @
D 0

D o

eeeeeeeeeeeeeeeeeeeee

9

Implementation of G-A

9

Implementation of G-A

9

Implementation of G-A

9

Implementation of G-A

[]

Aggregate
" as you hash

9

Implementation of G-A

HE H
@ 258 Q& m

Sort orders keys along with grouping them

Aggregate
@ @ ¢~ as you hash

eeeeeeeeeeeeeeeeeeeee

Sort vs. Hash-based GA

Hash typically outperforms Sort for

aggregation workloads'?3

|. Distributed Aggregation for Data-Parallel Computing:Interfaces and Implementations,Yu et. al., SOSP’09
2.Tenzing: A SQL Implementation On The MapReduce Framework, Chattopadhyaya et al., VLDB’I |
3.A Platform for Scalable One-Pass Analytics using MapReduce, Li et al., SIGMOD’ [|

Monday, December 3, 2012

Sort vs. Hash-based GA

Hash typically outperforms Sort for

aggregation workloads'?3

|. Distributed Aggregation for Data-Parallel Computing:Interfaces and Implementations,Yu et. al., SOSP’09
2.Tenzing: A SQL Implementation On The MapReduce Framework, Chattopadhyaya et al., VLDB’I |
3.A Platform for Scalable One-Pass Analytics using MapReduce, Li et al., SIGMOD’ [|

Hash-based G-A requires lots of memory

Monday, December 3, 2012

Hashtable Overheads

Allocator

Per-entry memory (B)

std:: sparse._

unordered_map hash_map
hoard [9] 64.9 67.8
tcmalloc [21] | 57.2 43
jemalloc [20] | 58.1 41

Dataset:
Key: 8B char array
Value: 4B integer

Monday, December 3, 2012

Hashtable Overheads

Allocator

Per-entry memory (B)

std:: sparse._

unordered_map hash_map
hoard [9] 64.9 67.8
tcmalloc [21] | 57.2 43
jemalloc [20] | 58.1 41

Sources of Memory
Overhead

* Allocator overhead for small heap objects

* |ndirection overhead (64bit)

* Empty slots in hashtable

Dataset:
Key: 8B char array
Value: 4B integer

Monday, December 3, 2012

How to build 2a memory-
efficient and fast

GroupBy-Aggregate!

eeeeeeeeeeeeeeeeeeeee

Approach

Use Compression for

Memory Efficiency

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

Strawman |

Compress each entry

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

Strawman |

Compress each entry

Ineffective compression -

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

Frequent compression

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

Tension between efficiency of

compression and performance

eeeeeeeeeeeeeeeeeeeee

| 4

Can we compress hashtables?

Tension between efficiency of

compression and performance

But we want both!

eeeeeeeeeeeeeeeeeeeee

Compressed Buffer Trees

eeeeeeeeeeeeeeeeeeeee

Compressecf Buffer Trees
(CBT)

/Q\ ® |n-memory B-tree with
each node augmented
SN with a memory buffer
— — — —— ® Inspired by the buffer
tree!

|. The Buffer Tree: A New Technique for Optimal I/O Algorithms, Arge.

eeeeeeeeeeeeeeeeeeeee

|7

Terminology

© Partial Aggregation Object (PAO)

* User-defined key and value
* Eg. (char*, uint32) for wordcount,
(char™, vector<T>) for k-Nearest-Neighbor

map()

<input token> =

(@ o)

reduc()

eeeeeeeeeeeeeeeeeeeee

Monday, December 3, 2012

Monday, December 3, 2012

(D Insert PAO @ Full root: @@e9

Monday, December 3, 2012

(D Insert PAO @ Full root: @@e9
a. sorted XD

Monday, December 3, 2012

(D Insert PAO

@ Full root; @@e9
a. sorted XD,
b. aggregated (@29

(D Insert PAO

@ Full root: @@e9
a. sorted (@c00

b. aggregated (@e®
c. spilled

(D Insert PAO

@ Full root: @@e9
a. sorted (@c00

b. aggregated (@e®
c. spilled

(D Insert PAO

@ Full root: @@e9
a. sorted (@c00

b. aggregated (@e®
c. spilled

@ Insert PAO
(3 Copied
fragments are
compressed

@ Full root: @@e9
a. sorted (@c00

b. aggregated (@e®
c. spilled

(D Insert PAO @) Full root: @ee9
A a. sorted @00

b. aggregated (@29
c. spilled

(3) Copied
fragments are

compressed /C)

O TN\

® Further spills }

create more/
fragments

Monday, December 3, 2012

(D Insert PAO @) Full root: @ee9

(® Copied a. sorted @-e9
fragments are b. aggregated (@®
compressed ,/C> c. spilled

— 7N\

® Further spills }

create more/
fragments

Monday, December 3, 2012

(D Insert PAO @) Full root: @ee9

(® Copied a. sorted @-e9
fragments are b. aggregated (@®
compressed ,/C> c. spilled

/ﬁ\ ® Full node: ClEH

R ¢ > a.decomp. (&)

-

® Further spills }

create more/
fragments

Monday, December 3, 2012

(D Insert PAO @) Full root: @ee9

(® Copied a. sorted @-e9
fragments are b. aggregated (@®
compressed ,/C> c. spilled

/ﬁ\ ® Full node: ClEH

R ¢ > a.decomp. (a2)
b.merged (€022

-

® Further spills }

create more/
fragments

Monday, December 3, 2012

(D Insert PAO @) Full root: @ee9

(3) Copied a. sorted @-00

fragments are b. aggregated (@®
compressed ,/C> c. spilled

/ﬁ\ ® Full node: ClEH

=T > a.decomp. GO
~ b.merged (€022
c.aggregated (@e)

-

® Further spills }

create more/
fragments

Monday, December 3, 2012

(D Insert PAO @) Full root: @ee9

(3) Copied a. sorted @-00

fragments are b. aggregated (@®
compressed ,/C> c. spilled

/ﬁ\ ® Full node: ClEH

=T > a.decomp. GO
~ b.merged (€022
c.aggregated (@e)

d. spilled

-

® Further spills }

create more/
fragments

Monday, December 3, 2012

(D Insert PAO @) Full root: @ee9

(3) Copied a. sorted @-00

fragments are b. aggregated (@®
compressed ,/C> c. spilled

/= _ ® Full node: (5

RO a @> 2 decomp. (&)
| b. merged @959
c. aggregated (@e®)

d. spilled

-

® Further spills }

create more/
fragments

Monday, December 3, 2012

Monday, December 3, 2012

() After all inserts,
tree is flushed

Monday, December 3, 2012

() After all inserts,
tree is flushed

Monday, December 3, 2012

() After all inserts,
tree is flushed

Monday, December 3, 2012

() After all inserts,
tree is flushed

Monday, December 3, 2012

() After all inserts,
tree is flushed

Monday, December 3, 2012

() After all inserts,
tree is flushed

Monday, December 3, 2012

() After all inserts,
tree is flushed

Monday, December 3, 2012

() After all inserts,
tree is flushed

(@) Aggregated
results available

in leaves

Monday, December 3, 2012

20

CBT Operation (recap)

PAOs always inserted into root buffer
If root full, sort PAQOs, aggregate and spill

Spilled buffer fragments are compressed in memory

If child is full, decompress fragments, merge and spill
recursively

® Flush tree at the end

Monday, December 3, 2012

21

Compressed Buffer Tree

eeeeeeeeeeeeeeeeeeeee

21

Compressed Buffer Tree

Memory efficiency through compression

- Being emptied

eeeeeeeeeeeeeeeeeeeee

21

Compressed Buffer Tree

Memory efficiency through compression

eeeeeeeeeeeeeeeeeeeee

21

Compressed Buffer Tree

Memory efficiency through compression

Effective compression through use of large
buffers

eeeeeeeeeeeeeeeeeeeee

21

Compressed Buffer Tree

Memory efficiency through compression

Effective compression through use of large
buffers

Strawman 2 [N
n

Frequent compression 2.'

eeeeeeeeeeeeeeeeeeeee

21

Compressed Buffer Tree

Memory efficiency through compression

Effective compression through use of large
buffers

eeeeeeeeeeeeeeeeeeeee

21

Compressed Buffer Tree

Memory efficiency through compression

Effective compression through use of large
buffers

High performance through buffering

eeeeeeeeeeeeeeeeeeeee

(S/spuooss-ndo , (T x) awil NdD

O 0 0 0 O 0 0 O
0 5 O 5 O 5 0 0 %
< o » N N — — e o @)

Implementation

) O S 1O S

(S/shey 401 %) H:o_c@:m__ﬁ uonebalbby

Monday, December 3, 2012

23

Performance

Microbenchmark

Application Dataset

Wordcount Key: Random 8B char array

Value: 4B uint
Applications:
Application Dataset
Tri-gram count Project Gutenberg ebooks
Clustering MIT Tiny Image Dataset
Pagerank Twitter follower network

Monday, December 3, 2012

Memory Usage: CBT vs. HT

Per-key Memory (B)

70F

(@)
-
I

(@)
(-
!

S
(@)

w0
(>}

(\)
(-}
!

—_
()
T

-

[1 Memory (left y-axis)
e Throughput (right y-axis)

11 23 35 47 59 71 11

23 35 47 59 71

Aggregation throughput (x10° keys/s)

|
()

|
[E—

x 10° Number of unique keys in dataset

CBT

Compressed Buffer Tree

HT

Google sparse _hash _map

Monday, December 3, 2012

Throughput: CBT wvs. HTC

120F

100 |

o
(>}
I

Per-key Memory (B)

DO
-
!

Dataset:

Key: 8B char array
Value: 4B uint

: Memory (Iefty aX|s)
e Throughput (right y-axis)

11 23 35 47 59 71 11

23 35 47 59 71

| | |
[\ w H—~

Aggregation throughput (x10° keys/s)

|
[S—

x10° Number of unique keys in dataset
Application: Wordcount

CBT

Compressed Buffer Tree

HT-C

TBB concurrent_hash_map

Monday, December 3, 2012

250 F

—_
ot
)

Per-key Memory (B)

50|

Performance

[1 Memory (left y-axis)
e Throughput (right y-axis)

DO

()

S
T

Trigram Clustering

Application

Aggregation throughput (x10° keys/s)

]
[\

|
—_

o

Pagerank
CBT Compressed Buffer Tree
HT Google sparse _hash _map
HT-C [TBB concurrent_hash_map

Monday, December 3, 2012

CBT: Summary

Memory efficiency through compression

Effective compression through use of large
buffers

High performance through buffering

eeeeeeeeeeeeeeeeeeeee

Thanks!

Monday, December 3, 2012

