
Memory-Efficient
GroupBy-Aggregate with
Compressed Buffer Trees

1

Hrishikesh Amur
Karsten Schwan
Georgia Tech.

Wolf Richter
David G. Andersen

Athula Balachandran
Erik Zawadzki

Carnegie Mellon

Michael Kaminsky
Intel Labs.

Monday, December 3, 2012

Motivation

2

Increasing cost of memory

Importance of GroupBy-Aggregate

Monday, December 3, 2012

Need for Memory
Efficiency

3

Monday, December 3, 2012

!

!

!"

!""

!"""

#""$

#""%

#""&

#""'

#""(

#"")

#""*

#"!"

#"!!

#"!#

#"!$

#"!%

#"!&

#"!'

#"!(

+,-./

0123

!
"#
$%
&'
"
($
)$
(&
%*

"#$ %&'()* +'#),(- ./0#&) .1' 2'2/&3 4#5#4,.3 0#++

4! 4# 4$ 4% 4& 4' 4(4) 4* 4!" 4!! 4!# 4!$ 4!% 4!& 4!' 4!(4!) 4!* 4#" 4#! 4##

"5!36

!36

!"36

!""36

!76

!"76

!""76

"6$ 7'2/&3 8#&,#.,/(* 9/& %:;<= >?'&,'* "+/- *4#+'$

"4$ 7'2/&3 8#&,#.,/(* ,(*'&8'& 2'2/&3 ?.,+,@#.,/(
!"#$%& '(!"#$%&#$'(#)* '**+ ,"- .*."-/ *0#*'1$"' &'+
1)&-$'(2 3&4 5' &%*-&(*6 .*."-/ 7&8&7$#/ 8*- 8-"7*11"- 7"-*

$1 *0#-&8"9&#*+ #" +*7-*&1* :;< *%*-/ #=" /*&-12 3>4 ?)*

&."@'# ", (-&'#*+ .*."-/ ,"- ?ABCD E@*-$*1 7&' %&-/ >/

"-+*-1 ", .&('$#@+*2 374 FG'1*.>9*H .*."-/ @1&(* #-*'+1

"%*- "'* ."'#) &7-"11 I; 1*-%*-1 ,-". & 79@1#*- @1*+ ,"-

&'$.&#$"' -*'+*-$'(3"'* ", #)* : +&#&7*'#*- #-&7*1 @1*+ $'

#)$1 1#@+/42

.35,4#+ ?*#-'A 0,.1 .1' #6,+,.3 ./)3(#2,4#++3 #)) 2'2/&3
4#5#4,.3 #4&/** .1' '(*'26+'A 4#(&')?4' 4/*.* #() 5/0'&B

C1'&'#* */2' 5&,/& #55&/#41'* "),*4?**') ,(D'4.,/(!$ 4#(
#++'8,#.' */2' /9 .1'*' 41#++'(-'* ,(),8,)?#++3A .1'&' ,* # ('') 9/&
('0 #&41,.'4.?&#+ */+?.,/(* .1#. 4#(5&/8,)' #-&'18&-*'# .*."-/
7&8&7$#/ *08&'1$"' #" .) 7".8@#&#$"'&9 17&9$'(&'+

#-&'18&-*'# .*."-/ 1)&-$'(&7-"11 7"99*7#$"'1 ", 1/1#*.1B E(
#)),.,/(A -,8'(&'4'(. .&'()* ./0#&)* 4/22/),.3<6#*') */+?.,/(*
"'B-BA FGHFIHFJJH$A ,. ,* ,25/&.#(. 9/& .1'*' #55&/#41'* ./ &'>?,&' #.
2/*. 2,(/& 41#(-'* ./ '(*?&' .1#. .1' +/0<4/*. 6'('9,.* /9
4/22/),.3 */+?.,/(* (/. 6' ?()'&2,(')B %1' ,(4&'#*') #)/5.,/(
/9 6+#)' *'&8'&* 0,.1 9#*. *1#&') ,(.'&4/(('4.,/(('.0/&K* #()
8,&.?#+,@#.,/(*/9.0#&' 4&'#.'* .1' /55/&.?(,.3 9/& ('0 2'2/&3
3.'2)'*,-(*B

E(.1,* 5#5'&A 0' 5&/5/*' # ('0 #&41,.'4.?&#+ 6?,+),(- 6+/4K ./
5&/8,)' .&#(*5#&'(. 2'2/&3 'L5#(*,/(#() *1#&,(- 9/&
4/22/),.3<6#*'))'*,-(*B D5'4,9,4#++3A 0' &'8,*,. .&#),.,/(#+
2'2/&3)'*,-(* ,(01,41 2'2/&3 2/)?+'* #&' 4/<+/4#.') 0,.1
5&/4'**/&* /(# *3*.'2 6/#&)A &'*.&,4.,(- .1' 4/(9,-?&#.,/(#()
4#+#6,+,.3 /9 6/.1 4/25?.' #() 2'2/&3 &'/?&4'*B E(*.'#)A 0'
#&-?' 9/& # +$1&((-*(&#*+ 2'2/&3)'*,-(.1#. '(4#5*?+#.'* #(
#& /9 4/22/),.3 2'2/&3 2/)?+'* ,(# *'5#&#.' *1#&')
2'2/&3 6+#)' .1#. 4#(6' #44'**')A #* ('')')A 63 2?+.,5+'
4/25?.' 6+#)'* 8,# # *1#&') 6+#)' ,(.'&4/(('4.B

C'),*4?** .1')'*,-(/9 # 2'2/&3 6+#)' #() ?*' ,. ./ 5&/5/*'
.0/ ('0 *3*.'2 #&41,.'4.?&'* ./ #41,'8' .&#(*5#&'(. 'L5#(*,/(
#() *1#&,(-B M?& 9,&*. */+?.,/(&'>?,&'* (/ 41#(-'* ./ 'L,*.,(-
3.'2 1#&)0#&'A ?*,(- *?55/&. #. .1' 8,&.?#+,@#.,/(+#3'& ./
5&/8,)' 5#-'<+'8'+ #44'** ./ # 2'2/&3 6+#)' #4&/** .1' *.#()#&)
:;E NL5&'**O ":;E'O$,(.'&9#4'B M?& *'4/() */+?.,/(5&/5/*'*
2,(,2#+ 1#&)0#&' *?55/&. /('8'&3 4/25?.' 6+#)'A 6?. 5&/8,)'*
9,('&<-&#,(') #44'** ./ # 2'2/&3 6+#)' #4&/** # 4/1'&'(. ('.0/&K
9#6&,4 9/& 4/22/),.3 */9.0#&' *.#4K*B

C')'2/(*.&#.' .1' 8#+,),.3 /9 /?& #55&/#41 .1&/?-1 *,2?+#.,/(*
/9 # 2,L /9 '(.'&5&,*' 6'(412#&K* *?55+'2'(.') 0,.1 .'* 9&/2
.1&'' +,8')#.#4'(.'& ,(*.#++#.,/(*B M?& &'*?+.* *1/0 .1#. 2'2/&3
),*#--&'-#.,/(4#(5&/8,)' *,-(,9,4#(. 5'&9/&2#(4' 6'('9,.* "/(
#8'&#-' JPQ$,(2'2/&3<4/(*.&#,(') '(8,&/(2'(.*B R)),.,/(#++3A
.1' *1#&,(- '(#6+') 63 /?& */+?.,/(* 4#('(#6+' +#&-'
,25&/8'2'(.* ,(5'&9/&2#(4'<5'&<)/++#& "?5 ./ GST$ #() -&'#.'&
+'8'+* /9 4/(*/+,)#.,/("UQ$ 01'(/5.,2,@,(- 2'2/&3
5&/8,*,/(,(- #4&/** 2?+.,5+' *'&8'&*B

%1' &'*. /9 .1' 5#5'& ,* /&-#(,@') #* 9/++/0*B D'4.,/(!),*4?**'*
5&,/& 0/&KB D'4.,/(U 5&'*'(.* /?& 2'2/&3 6+#)')'*,-(#() .1'
,25+'2'(.#.,/(/9 /?& 5&/5/*') *3*.'2 #&41,.'4.?&'*A 01,41 0'
'8#+?#.' ,(D'4.,/(VB D'4.,/(W),*4?**'* /.1'& .&#)'/99* #()
)'*,-(*A #() D'4.,/(X 4/(4+?)'*B

)* +,-./,012+3
R +#&-' 6/)3 /9 5&,/& 0/&K "'B-BA FJ!HFJUHFJVHFJWHFJXHFJSHFJGH$
1#* 'L#2,(') ?*,(- &'2/.' *'&8'&*Y 2'2/&3 9/& *0#5 *5#4'
FJ!HFJXHA 9,+' *3*.'2 4#41,(- FJUHFJWHA /& Z#2[,*K* FJVHA
.35,4#++3 /8'& 4/(8'(.,/(#+ ('.0/&K ,(.'&9#4'* ",B'BA N.1'&('.$B
%1'*' #55&/#41'*)/ (/. 9?()#2'(.#++3 #))&'** .1' 4/25?.'<./<
2'2/&3 4#5#4,.3 ,26#+#(4'\ .1' ./.#+ 2'2/&3 4#5#4,.3 &'+#.,8' ./
4/25?.' ,* ?(41#(-') 01'(#++ .1' *'&8'&* ('') 2#L,2?2
4#5#4,.3 #. .1' *#2' .,2'B R)),.,/(#++3A #+.1/?-1 .1'*'
#55&/#41'* 4#(6' ?*') ./ 5&/8,)' *1#&,(-A .1'3 *?99'& 9&/2
,-(,9,4#(. +,2,.#.,/(01'(.#&-'.,(- 4/22/),.3<6#*') *3*.'2*B
E(5#&.,4?+#&A .1'*' 5&/5/*#+* 2#3 &'>?,&' *?6*.#(.,#+ *3*.'2
2/),9,4#.,/(*A *?41 #* #55+,4#.,/(<*5'4,9,4 5&/-,(-
,(.'&9#4'* FJGH #() 5&/./4/+* FJVHFJSH] 41#(-'* ./ .1' 1/*.
/5'&#.,(- *3*.'2 #())'8,4')&,8'&* FJ!HFJUHFJVHFJXH] &')?4')
&'+,#6,+,.3 ,(.1' 9#4' /9 &'2/.' *'&8'& 4&#*1'* FJUHFJXH] #()^/&
,25.,4#+ #44'** +#.'(4,'* FJVHFJSHB M?& */+?.,/(* .#&-'. .1'
4/22/),.3<6#*') 8/+?2' *'&8'& 2#&K'. #() .1?* #8/,) ,(8#*,8'
41#(-'* ./ #55+,4#.,/(*A /5'&#.,(- *3*.'2*A /& *'&8'& #&41,.'4.?&'B

D322'.&,4 2?+.,5&/4'**/&* "D7:*$ #()),*.&,6?.') *1#&')
2'2/&3 *3*.'2* "[D7*$ FJIHF!PHF!JHF!!HF!UHF!VHF!WHF!XHF!SH
#++/0 #++ .1' (/)'* ,(# *3*.'2 ./ *1#&' # -+/6#+ #))&'** *5#4'B
=/0'8'&A +,K' .1' ('.0/&K<6#*') *1#&,(- #55&/#41'*A .1'*'
)'*,-(*)/ (/. .#&-'. .1' 4/25?.'<./<2'2/&3<4#5#4,.3 &#.,/B

Decreasing memory capacity
per core

4

1. Disaggregated Memory for Expansion and Sharing in Blade Servers, Lim et al., ISCA’09

Monday, December 3, 2012

DRAM is expensive

5

CPU
Memory
Storage
Others

Standard (S)

Standard (L)

Hi-memory (XXL)

Hi-CPU (M)

Amazon EC2 proportional resource cost

Monday, December 3, 2012

GroupBy-Aggregate

6

Monday, December 3, 2012

7

GroupBy Aggregate

GroupBy-Aggregate

key-value pair

Monday, December 3, 2012

7

GroupBy Aggregate

GroupBy-Aggregate

key-value pair

Monday, December 3, 2012

7

GroupBy Aggregate

GroupBy-Aggregate

key-value pair

Monday, December 3, 2012

MapReduce

8

Map

Map

Map

Red.

Red.

Cb.

Cb.

Cb.

Monday, December 3, 2012

MapReduce

8

Map

Map

Map

Red.

Red.

Cb.

Cb.

Cb.

Monday, December 3, 2012

MapReduce

8

Map

Map

Map

Red.

Red.

Cb.

Cb.

Cb.

Monday, December 3, 2012

MapReduce

8

Map

Map

Map

Red.

Red.

Cb.

Cb.

Cb.

Monday, December 3, 2012

MapReduce

8

Map

Map

Map

Red.

Red.

Cb.

Cb.

Cb.

Monday, December 3, 2012

MapReduce

8

Map

Map

Map

Red.

Red.

Cb.

Cb.

Cb.

Monday, December 3, 2012

MapReduce

8

Map

Map

Map

Red.

Red.

Cb.

Cb.

Cb.

GA

GA

GA

GA

GA

Monday, December 3, 2012

Implementation of G-A

Map Sort Agg.

Hash

9

Map

Monday, December 3, 2012

Implementation of G-A

Map Sort Agg.

Hash

9

Map

Monday, December 3, 2012

Implementation of G-A

Map Sort Agg.

Hash

9

Map

Monday, December 3, 2012

Implementation of G-A

Map Sort Agg.

Hash

9

Map
Aggregate

as you hash

Monday, December 3, 2012

Implementation of G-A

Map Sort Agg.

Hash

Sort orders keys along with grouping them

9

Map
Aggregate

as you hash

Monday, December 3, 2012

Sort vs. Hash-based GA

10

1. Distributed Aggregation for Data-Parallel Computing:Interfaces and Implementations, Yu et. al., SOSP’09
2. Tenzing: A SQL Implementation On The MapReduce Framework, Chattopadhyaya et al., VLDB’11
3. A Platform for Scalable One-Pass Analytics using MapReduce, Li et al., SIGMOD’11

Hash typically outperforms Sort for
aggregation workloads1,2,3

Monday, December 3, 2012

Sort vs. Hash-based GA

10

1. Distributed Aggregation for Data-Parallel Computing:Interfaces and Implementations, Yu et. al., SOSP’09
2. Tenzing: A SQL Implementation On The MapReduce Framework, Chattopadhyaya et al., VLDB’11
3. A Platform for Scalable One-Pass Analytics using MapReduce, Li et al., SIGMOD’11

Hash typically outperforms Sort for
aggregation workloads1,2,3

Hash-based G-A requires lots of memory

Monday, December 3, 2012

Hashtable Overheads

11
 char* key Value* value Accumulator

count

alloc. overhead

Hashtable
raw key data

alloc. overhead

(a) Memory overheads in hashtable-based aggregation

Allocator
Per-entry memory (B)

std::
unordered map

sparse
hash map

hoard [9] 64.9 67.8

tcmalloc [21] 57.2 43

jemalloc [20] 58.1 41

(b) Per-entry memory consumption for different allocator and

hashtable combinations (Unique keys inserted: 2
26

, keys: 8B

strings, values: 4B integers; g++-4.4 compiler on 64-bit system

Figure 2: Hashtable-based aggregation

the consideration of hash-based aggregators for MapRe-

duce [11, 34].

The Hash-based Approach. Hash-based aggregation

is common in RDBMSs, and recent work has begun to

explore its application to MapReduce [11, 34].

Aggregation using hashing works as follows: a data

structure such as a hashtable stores one “accumulator” for

each key. Intermediate key-value pairs are then hashed

by key and accumulated. Finally, the aggregated key-

value pairs are read iteratively from the hashtable and

transferred to the reducers.

Unfortunately, aggregation using a hashtable incurs

high memory overhead per entry in the hash map. Before

describing our alternative—Compressed Buffer Trees—

we briefly walk through the overheads of hash-based

aggregation and show how to shrink them in order to

have a fair basis for comparison. Figure 2a shows the

implementation of hash-based aggregation for wordcount

using a hashtable, which maps string keys to accumu-

lators, along with associated overheads. The overheads

can be classified as follows:

1. Key-value pointers: pointers to the key and the accu-

mulator are stored in the hashtable. Small accumu-

lators can be inlined in the hashtable as an optimiza-

tion, but this is difficult to do since the Value type

is decided at run-time and not at compile-time. The

pointers add 16B per entry (on a 64-bit machine).

2. Memory allocator: the key and accumulator are allo-

cated on the heap. Each allocation incurs overhead

from the user-space memory allocator, which can

be costly if the requested sizes are small. Using an

allocator that handles small objects efficiently such

as jemalloc [20] reduces the per-key overhead by

about 20B compared to the default libc allocator.

3. Hashtable implementation: unoccupied slots in the

hashtable waste space in order to limit the load

factor of the hashtable for performance reasons. A

memory-efficient implementation such as Google’s

Sparsehash [24] which minimizes the overhead of

unoccupied slots and has a per-entry overhead of

just 2.67 bits, can be used at the cost of slightly

slower inserts. Sparsehash reduces the per-entry

overhead by about 16B compared to using the STL

unordered map.

As shown in Figure 2b, the per-entry memory over-

head for state-of-the-art implementation of hashtables

and allocators reflects the high overhead associated with

this approach. It is not our intent to optimize this over-

head any further in this paper. Instead, we show that

hash-based aggregation does not require a hashtable data

structure at all.

Compressed Buffer Trees Compressing hashtables is

challenging for two reasons:

1. Compressing and decompressing on every access to

the hashtable adds unacceptably high overhead.

2. Compression works best on large blocks, but key-

value pairs in the hashtable are small. This creates a

tension between compression/decompression speed

and effectiveness.

The key to effective compression is to be able to per-

form compression in relatively large chunks while amor-

tizing the cost across multiple update operations. The

Compressed Buffer Tree achieves this by taking advan-

tage of the observation that aggregation can occur lazily:

updates need not be merged immediately, but can be

deferred.

Lazy aggregation enables effective compression: mul-

tiple accumulators can be buffered together and main-

tained in compressed form in memory. With eager ag-

gregation, the entire compressed buffer would have to be

decompressed if any of the accumulators were required.

With lazy aggregation, decompression of the buffer is

deferred until we have batched updates to multiple accu-

mulators in the buffer. Thus, the compression costs are

now amortized over multiple updates.

How can the system ensure that sufficiently many up-

dates have been batched so that it is worthwhile decom-

pressing a compressed buffer of accumulators? The an-

swer to this question comes from an analogous tradeoff

that exists in external data structures that try to intelli-

gently move data to and from slower external storage.

Consider the implementation of an external binary

search tree: immediately inserting an element into the

tree requires traversing the tree and performing the

3

Dataset:
Key: 8B char array
Value: 4B integer

Monday, December 3, 2012

Hashtable Overheads

11
 char* key Value* value Accumulator

count

alloc. overhead

Hashtable
raw key data

alloc. overhead

(a) Memory overheads in hashtable-based aggregation

Allocator
Per-entry memory (B)

std::
unordered map

sparse
hash map

hoard [9] 64.9 67.8

tcmalloc [21] 57.2 43

jemalloc [20] 58.1 41

(b) Per-entry memory consumption for different allocator and

hashtable combinations (Unique keys inserted: 2
26

, keys: 8B

strings, values: 4B integers; g++-4.4 compiler on 64-bit system

Figure 2: Hashtable-based aggregation

the consideration of hash-based aggregators for MapRe-

duce [11, 34].

The Hash-based Approach. Hash-based aggregation

is common in RDBMSs, and recent work has begun to

explore its application to MapReduce [11, 34].

Aggregation using hashing works as follows: a data

structure such as a hashtable stores one “accumulator” for

each key. Intermediate key-value pairs are then hashed

by key and accumulated. Finally, the aggregated key-

value pairs are read iteratively from the hashtable and

transferred to the reducers.

Unfortunately, aggregation using a hashtable incurs

high memory overhead per entry in the hash map. Before

describing our alternative—Compressed Buffer Trees—

we briefly walk through the overheads of hash-based

aggregation and show how to shrink them in order to

have a fair basis for comparison. Figure 2a shows the

implementation of hash-based aggregation for wordcount

using a hashtable, which maps string keys to accumu-

lators, along with associated overheads. The overheads

can be classified as follows:

1. Key-value pointers: pointers to the key and the accu-

mulator are stored in the hashtable. Small accumu-

lators can be inlined in the hashtable as an optimiza-

tion, but this is difficult to do since the Value type

is decided at run-time and not at compile-time. The

pointers add 16B per entry (on a 64-bit machine).

2. Memory allocator: the key and accumulator are allo-

cated on the heap. Each allocation incurs overhead

from the user-space memory allocator, which can

be costly if the requested sizes are small. Using an

allocator that handles small objects efficiently such

as jemalloc [20] reduces the per-key overhead by

about 20B compared to the default libc allocator.

3. Hashtable implementation: unoccupied slots in the

hashtable waste space in order to limit the load

factor of the hashtable for performance reasons. A

memory-efficient implementation such as Google’s

Sparsehash [24] which minimizes the overhead of

unoccupied slots and has a per-entry overhead of

just 2.67 bits, can be used at the cost of slightly

slower inserts. Sparsehash reduces the per-entry

overhead by about 16B compared to using the STL

unordered map.

As shown in Figure 2b, the per-entry memory over-

head for state-of-the-art implementation of hashtables

and allocators reflects the high overhead associated with

this approach. It is not our intent to optimize this over-

head any further in this paper. Instead, we show that

hash-based aggregation does not require a hashtable data

structure at all.

Compressed Buffer Trees Compressing hashtables is

challenging for two reasons:

1. Compressing and decompressing on every access to

the hashtable adds unacceptably high overhead.

2. Compression works best on large blocks, but key-

value pairs in the hashtable are small. This creates a

tension between compression/decompression speed

and effectiveness.

The key to effective compression is to be able to per-

form compression in relatively large chunks while amor-

tizing the cost across multiple update operations. The

Compressed Buffer Tree achieves this by taking advan-

tage of the observation that aggregation can occur lazily:

updates need not be merged immediately, but can be

deferred.

Lazy aggregation enables effective compression: mul-

tiple accumulators can be buffered together and main-

tained in compressed form in memory. With eager ag-

gregation, the entire compressed buffer would have to be

decompressed if any of the accumulators were required.

With lazy aggregation, decompression of the buffer is

deferred until we have batched updates to multiple accu-

mulators in the buffer. Thus, the compression costs are

now amortized over multiple updates.

How can the system ensure that sufficiently many up-

dates have been batched so that it is worthwhile decom-

pressing a compressed buffer of accumulators? The an-

swer to this question comes from an analogous tradeoff

that exists in external data structures that try to intelli-

gently move data to and from slower external storage.

Consider the implementation of an external binary

search tree: immediately inserting an element into the

tree requires traversing the tree and performing the

3

Dataset:
Key: 8B char array
Value: 4B integer

Sources of Memory
Overhead

• Allocator overhead for small heap objects
• Indirection overhead (64bit)
• Empty slots in hashtable

Monday, December 3, 2012

12

How to build a memory-
efficient and fast
GroupBy-Aggregate?

Monday, December 3, 2012

Approach

13

Use Compression for
Memory Efficiency

Monday, December 3, 2012

Can we compress hashtables?
14

Monday, December 3, 2012

Can we compress hashtables?

Compress each entry

14

Strawman 1

Monday, December 3, 2012

Can we compress hashtables?

Compress each entry

Ineffective compression

14

Strawman 1

Monday, December 3, 2012

Can we compress hashtables?
14

Monday, December 3, 2012

Can we compress hashtables?

Compress a block

14

Strawman 2

Monday, December 3, 2012

Can we compress hashtables?

Compress a block

Frequent compression

14

Strawman 2

Monday, December 3, 2012

Can we compress hashtables?
14

Monday, December 3, 2012

Can we compress hashtables?
14

Tension between efficiency of
compression and performance

Monday, December 3, 2012

Can we compress hashtables?
14

But we want both!

Tension between efficiency of
compression and performance

Monday, December 3, 2012

Compressed Buffer Trees

15

Monday, December 3, 2012

Compressed Buffer Trees
(CBT)

16

1. The Buffer Tree: A New Technique for Optimal I/O Algorithms, Arge.

• In-memory B-tree with
each node augmented
with a memory buffer
• Inspired by the buffer
tree1

Monday, December 3, 2012

Terminology

17

Partial Aggregation Object (PAO)
• User-defined key and value
• Eg. (char*, uint32) for wordcount,
 (char*, vector<T>) for k-Nearest-Neighbor

<input token>
map()

()
reduce()

Monday, December 3, 2012

18

Monday, December 3, 2012

18

Insert PAO1

Monday, December 3, 2012

18

Insert PAO1 Full root: 2

Monday, December 3, 2012

18

Insert PAO1

a. sorted
Full root: 2

Monday, December 3, 2012

18

Insert PAO1

a. sorted
b. aggregated

Full root: 2

Monday, December 3, 2012

18

Insert PAO1

a. sorted
b. aggregated
c. spilled

Full root: 2

Monday, December 3, 2012

18

Insert PAO1

a. sorted
b. aggregated
c. spilled

Full root: 2

Monday, December 3, 2012

18

Insert PAO1

a. sorted
b. aggregated
c. spilled

Full root: 2

Monday, December 3, 2012

18

Insert PAO1

Copied
fragments are
compressed

3 a. sorted
b. aggregated
c. spilled

Full root: 2

Monday, December 3, 2012

18

Insert PAO1

Copied
fragments are
compressed

3 a. sorted
b. aggregated
c. spilled

Full root: 2

Further spills
create more
fragments

4

Monday, December 3, 2012

18

Insert PAO1

Copied
fragments are
compressed

3 a. sorted
b. aggregated
c. spilled

Full root: 2

Further spills
create more
fragments

4

Full node: 5

Monday, December 3, 2012

18

Insert PAO1

Copied
fragments are
compressed

3 a. sorted
b. aggregated
c. spilled

Full root: 2

Further spills
create more
fragments

4

Full node: 5

a. decomp.

Monday, December 3, 2012

18

Insert PAO1

Copied
fragments are
compressed

3 a. sorted
b. aggregated
c. spilled

Full root: 2

Further spills
create more
fragments

4

Full node: 5

a. decomp.
b. merged

Monday, December 3, 2012

18

Insert PAO1

Copied
fragments are
compressed

3 a. sorted
b. aggregated
c. spilled

Full root: 2

Further spills
create more
fragments

4

Full node: 5

a. decomp.
b. merged
c. aggregated

Monday, December 3, 2012

18

Insert PAO1

Copied
fragments are
compressed

3 a. sorted
b. aggregated
c. spilled

Full root: 2

Further spills
create more
fragments

4

Full node: 5

a. decomp.
b. merged
c. aggregated
d. spilled

Monday, December 3, 2012

18

Insert PAO1

Copied
fragments are
compressed

3 a. sorted
b. aggregated
c. spilled

Full root: 2

Further spills
create more
fragments

4

Full node: 5

a. decomp.
b. merged
c. aggregated
d. spilled

Monday, December 3, 2012

19

Monday, December 3, 2012

19

After all inserts,
tree is flushed

6

Monday, December 3, 2012

19

After all inserts,
tree is flushed

6

Monday, December 3, 2012

19

After all inserts,
tree is flushed

6

Monday, December 3, 2012

19

After all inserts,
tree is flushed

6

Monday, December 3, 2012

19

After all inserts,
tree is flushed

6

Monday, December 3, 2012

19

After all inserts,
tree is flushed

6

Monday, December 3, 2012

19

After all inserts,
tree is flushed

6

Monday, December 3, 2012

19

After all inserts,
tree is flushed

6

Aggregated
results available
in leaves

7

Monday, December 3, 2012

CBT Operation (recap)

• PAOs always inserted into root buffer

• If root full, sort PAOs, aggregate and spill

• Spilled buffer fragments are compressed in memory

• If child is full, decompress fragments, merge and spill
recursively

• Flush tree at the end

20

Monday, December 3, 2012

Compressed Buffer Tree
21

Monday, December 3, 2012

Compressed Buffer Tree
21

Memory efficiency through compression

Being emptied

Monday, December 3, 2012

Compressed Buffer Tree
21

Memory efficiency through compression

Monday, December 3, 2012

Effective compression through use of large
buffers

Compressed Buffer Tree
21

Memory efficiency through compression

Monday, December 3, 2012

Effective compression through use of large
buffers

Compressed Buffer Tree
21

Memory efficiency through compression

Strawman 2

Frequent compression

Monday, December 3, 2012

Effective compression through use of large
buffers

Compressed Buffer Tree
21

Memory efficiency through compression

Monday, December 3, 2012

Effective compression through use of large
buffers

Compressed Buffer Tree
21

Memory efficiency through compression

High performance through buffering

Monday, December 3, 2012

Implementation

Baseline

+Comp

+AsynSort

+AsynComp.

+Prio
+DoubBuf

+StructBuf

+SpecComp

0.0

0.5

1.0

1.5

2.0
A

gg
re

ga
tio

n
th

ro
ug

hp
ut

(×
10

6
ke

ys
/s

)

0

50

100

150

200

250

300

350

400

C
P

U
tim

e
(×

10
−
2

cp
u-

se
co

nd
s/

s)

Monday, December 3, 2012

Performance

23

Microbenchmark

Applications:

Application Dataset

Wordcount Key: Random 8B char array
Value: 4B uint

Application Dataset
Tri-gram count Project Gutenberg ebooks

Clustering MIT Tiny Image Dataset
Pagerank Twitter follower network

Monday, December 3, 2012

11 23 35 47 59 71 11 23 35 47 59 71
×106 Number of unique keys in dataset

0

10

20

30

40

50

60

70

Pe
r-

ke
y

M
em

or
y

(B
)

0

1

2

3

4

A
gg

re
ga

tio
n

th
ro

ug
hp

ut
(×

10
6

ke
ys

/s
)

Memory (left y-axis)
Throughput (right y-axis)
Memory (left y-axis)
Throughput (right y-axis)

CBT Compressed Buffer Tree

HT Google sparse_hash_map

Memory Usage: CBT vs. HT

Monday, December 3, 2012

11 23 35 47 59 71 11 23 35 47 59 71
×106 Number of unique keys in dataset

0

20

40

60

80

100

120

Pe
r-

ke
y

M
em

or
y

(B
)

0

1

2

3

4

A
gg

re
ga

tio
n

th
ro

ug
hp

ut
(×

10
6

ke
ys

/s
)

Memory (left y-axis)
Throughput (right y-axis)
Memory (left y-axis)
Throughput (right y-axis)

Application: Wordcount
Dataset:
Key: 8B char array
Value: 4B uint

Throughput: CBT vs. HT-C

CBT Compressed Buffer Tree

HT-C TBB concurrent_hash_map

Monday, December 3, 2012

Trigram Clustering Pagerank
Application

0

50

100

150

200

250

Pe
r-

ke
y

M
em

or
y

(B
)

0

1

2

3

4

5

6

7

A
gg

re
ga

tio
n

th
ro

ug
hp

ut
(×

10
6

ke
ys

/s
)

Memory (left y-axis)
Throughput (right y-axis)
Memory (left y-axis)
Throughput (right y-axis)

Performance

CBT Compressed Buffer Tree

HT Google sparse_hash_map

HT-C TBB concurrent_hash_map

Monday, December 3, 2012

Effective compression through use of large
buffers

CBT: Summary
27

Memory efficiency through compression

High performance through buffering

Monday, December 3, 2012

Thanks!

Monday, December 3, 2012

