Memory-Efficient
GroupBy-Aggregate with
Compressed Buffer Trees

Hrishikesh Amur
Karsten Schwan
Georgia Tech.

Wolf Richter
David G.Andersen
Athula Balachandran
Erik Zawadzki
Carnegie Melion

Michael Kaminsky
Intel Labs.

eeeeeeeeeeeeeeeeeeeee



2

Motivation

Increasing cost of memory

Importance of GroupBy-Aggregate
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Need for Memory
Efficiency
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Decreasing memory capacity
per core
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1. Disaggregated Memory for Expansion and Sharing in Blade Servers, Lim et al., ISCA'09
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DRAM is expensive

Standard (S) ‘

® CPU
Standard (L) ‘ ® Memory
Hi-memory (XXL) ‘ g g;::g:

Hi-CPU (M) ol
Amazon EC2 proportional resource cost
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GroupBy-Aggregate
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GroupBy Aggregate
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MapReduce
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Implementation of G-A
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Implementation of G-A
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Implementation of G-A
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Implementation of G-A
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Aggregate
" as you hash
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Implementation of G-A

HE H
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Sort orders keys along with grouping them

Aggregate
@ @ ¢~ as you hash
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Sort vs. Hash-based GA

Hash typically outperforms Sort for

aggregation workloads'?3

|. Distributed Aggregation for Data-Parallel Computing:Interfaces and Implementations,Yu et. al., SOSP’09
2.Tenzing: A SQL Implementation On The MapReduce Framework, Chattopadhyaya et al., VLDB’I |
3.A Platform for Scalable One-Pass Analytics using MapReduce, Li et al., SIGMOD’ [ |
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Sort vs. Hash-based GA

Hash typically outperforms Sort for

aggregation workloads'?3

|. Distributed Aggregation for Data-Parallel Computing:Interfaces and Implementations,Yu et. al., SOSP’09
2.Tenzing: A SQL Implementation On The MapReduce Framework, Chattopadhyaya et al., VLDB’I |
3.A Platform for Scalable One-Pass Analytics using MapReduce, Li et al., SIGMOD’ [ |

Hash-based G-A requires lots of memory
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Hashtable Overheads

Allocator

Per-entry memory (B)

std:: sparse._

unordered_map hash_map
hoard [9] 64.9 67.8
tcmalloc [21] | 57.2 43
jemalloc [20] | 58.1 41

Dataset:
Key: 8B char array
Value: 4B integer
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Hashtable Overheads

Allocator

Per-entry memory (B)

std:: sparse._

unordered_map hash_map
hoard [9] 64.9 67.8
tcmalloc [21] | 57.2 43
jemalloc [20] | 58.1 41

Sources of Memory
Overhead

* Allocator overhead for small heap objects

* |ndirection overhead (64bit)

* Empty slots in hashtable

Dataset:
Key: 8B char array
Value: 4B integer
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How to build 2a memory-
efficient and fast

GroupBy-Aggregate!

eeeeeeeeeeeeeeeeeeeee



Approach

Use Compression for

Memory Efficiency
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Can we compress hashtables?

eeeeeeeeeeeeeeeeeeeee
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Can we compress hashtables?

Strawman |

Compress each entry
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Can we compress hashtables?

Strawman |

Compress each entry

Ineffective compression -
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Can we compress hashtables?
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Can we compress hashtables?
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Can we compress hashtables?

Frequent compression
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Can we compress hashtables?
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Can we compress hashtables?

Tension between efficiency of

compression and performance
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Can we compress hashtables?

Tension between efficiency of

compression and performance

But we want both!
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Compressed Buffer Trees
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Compressecf Buffer Trees
(CBT)

/Q\ ® |n-memory B-tree with
each node augmented
SN with a memory buffer
— — — —— ® Inspired by the buffer
tree!

|. The Buffer Tree: A New Technique for Optimal I/O Algorithms, Arge.
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Terminology

© Partial Aggregation Object (PAO)

* User-defined key and value
* Eg. (char*, uint32) for wordcount,
(char™, vector<T>) for k-Nearest-Neighbor

map()

<input token> =

(@ o)

reduc()
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(D Insert PAO @ Full root: @@e9
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(D Insert PAO @ Full root: @@e9
a. sorted XD
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(D Insert PAO

@ Full root; @@e9
a. sorted XD,
b. aggregated (@29
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(D Insert PAO @) Full root: @ee9
A a. sorted @00

b. aggregated (@29
c. spilled

(3) Copied
fragments are

compressed /C)

O TN\

® Further spills }

create more/
fragments
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(D Insert PAO @) Full root: @ee9

(® Copied a. sorted @-e9
fragments are b. aggregated (@®
compressed ,/C> c. spilled

— 7N\

® Further spills }

create more/
fragments
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(D Insert PAO @) Full root: @ee9

(® Copied a. sorted @-e9
fragments are b. aggregated (@®
compressed ,/C> c. spilled

/ﬁ\ ® Full node: ClEH

R ¢ > a.decomp. (&)

-

® Further spills }

create more/
fragments
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(D Insert PAO @) Full root: @ee9

(® Copied a. sorted @-e9
fragments are b. aggregated (@®
compressed ,/C> c. spilled

/ﬁ\ ® Full node: ClEH

R ¢ > a.decomp. (a2)
b.merged (€022

-

® Further spills }

create more/
fragments
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(D Insert PAO @) Full root: @ee9

(3) Copied a. sorted @-00

fragments are b. aggregated (@®
compressed ,/C> c. spilled

/ﬁ\ ® Full node: ClEH

=T > a.decomp. GO
~ b.merged (€022
c.aggregated (@e)

-

® Further spills }

create more/
fragments
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(D Insert PAO @) Full root: @ee9

(3) Copied a. sorted @-00

fragments are b. aggregated (@®
compressed ,/C> c. spilled

/ﬁ\ ® Full node: ClEH

=T > a.decomp. GO
~ b.merged (€022
c.aggregated (@e)

d. spilled

-

® Further spills }

create more/
fragments
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(D Insert PAO @) Full root: @ee9

(3) Copied a. sorted @-00

fragments are b. aggregated (@®
compressed ,/C> c. spilled

/= _ ® Full node: (5

RO a @> 2 decomp. (&)
| b. merged @959
c. aggregated (@e®)

d. spilled

-

® Further spills }

create more/
fragments
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() After all inserts,
tree is flushed
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() After all inserts,
tree is flushed
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() After all inserts,
tree is flushed
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() After all inserts,
tree is flushed

(@) Aggregated
results available

in leaves
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CBT Operation (recap)

PAOs always inserted into root buffer
If root full, sort PAQOs, aggregate and spill

Spilled buffer fragments are compressed in memory

If child is full, decompress fragments, merge and spill
recursively

® Flush tree at the end

Monday, December 3, 2012
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Compressed Buffer Tree

eeeeeeeeeeeeeeeeeeeee
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Compressed Buffer Tree

Memory efficiency through compression

- Being emptied
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Compressed Buffer Tree

Memory efficiency through compression
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Compressed Buffer Tree

Memory efficiency through compression

Effective compression through use of large
buffers

eeeeeeeeeeeeeeeeeeeee
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Compressed Buffer Tree

Memory efficiency through compression

Effective compression through use of large
buffers

Strawman 2 [N
n

Frequent compression 2.'
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Compressed Buffer Tree

Memory efficiency through compression

Effective compression through use of large
buffers
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Compressed Buffer Tree

Memory efficiency through compression

Effective compression through use of large
buffers

High performance through buffering
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Performance

Microbenchmark

Application Dataset

Wordcount Key: Random 8B char array

Value: 4B uint
Applications:
Application Dataset
Tri-gram count Project Gutenberg ebooks
Clustering MIT Tiny Image Dataset
Pagerank Twitter follower network
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Memory Usage: CBT vs. HT

Per-key Memory (B)
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Throughput: CBT wvs. HTC
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TBB concurrent_hash_map
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CBT: Summary

Memory efficiency through compression

Effective compression through use of large
buffers

High performance through buffering
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Thanks!
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