Row Buffer Locality-Aware Hybrid Memory Caching Policies

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, Onur Mutlu (Carnegie Mellon University)

1. Motivation / Background

- DRAM scaling is becoming difficult
- Memories like Phase Change Memory (PCM) offer scalability, but have drawbacks
- Use DRAM as a cache to PCM

	PCM	DRAM
Data storage	Resistance	Charge
Scalability	High	Low
Latency (R/W)	~4x/~12x	1x
Energy (R/W)	~2x/~40x	1x
Endurance	10 ⁸ writes	N/A

2. Key Insight

- DRAM and PCM both employ row buffers
- Similar row hit latency, different row miss latencies
- Store data which miss in the row buffer and are reused frequently in DRAM

3. Mechanism

- For recently accessed rows in PCM,
 - Track misses to predict future locality
 - Track accesses to predict future reuse
 - Cache data after a threshold number of misses and accessos in an interval

	PCM	DRAM
Row buffer hit	40 ns	40 ns
Row buffer miss	128-368 ns	80 ns

4. Evaluation

- 16-core system, 32/512 KB L1/L2 per core
- Separate DRAM and PCM controllers
- I GB DRAM, 16 GB PCM (both 8 banks)

accesses in an interval

Dynamically adjust threshold to adapt to runtime characteristics

