Scaling Metadata in HDFS

Lin Xiao, Garth Gibson
.. 2T . B TR O e

Need for Scalable Metadata Scaling Federated HDFS: ShardFS

" Big Data is lots of data and lots of files too * Middleware layer on top of HDFS distributes files
" Lots of files means lots of metadata operations " Each namenode only sees its own namespace
osmos ¢ B I —— = Datanodes can serve all namenodes (federated)
X Seeesssseser oo - Sesceeene: | Sesees = Distribute files: by hash(fullpath) or hash(filename)
5 2o " Only one namenode to handle a single file operation
Q ég;g; " (Client middleware replicates namespace (directories) and
-l implements distributed transactions (mkdir,rename)
; : Eii | NN2/ NN3/
* R TI I * T I 1T 1T
" Even modern file systems don’t scale metadata well | |
= HPC: federated independent subtrees is the norm BN |

= Hadoop: until recently only one Namenode [f3 2
" We are exploring multiple strategies to scale metada ®

" Federated namenodes with client middleware Concu rrencx Cha"enges

= Shard files and replicate namespace

" Use a lock server for isolation and atomicity = Making changes to middleware-replicated namespace
= Extend namenode to out-of-core metadata with LevelDB = clientl: mkdir /a/b/c (/a/b on NN1 then /a/b/c on NN2)
= Re-code client/namenode to wrap on distributed table = client2: create /a/b/c/f1 (NN2) &create /a/b/c/f2 (NN1)
HDFS with Out of Core Metadata = client2 fails to create f2 b/c parent dir doesn’t exist on NN1
" Fine-grained tree locking (slow) for replicated directory ops
* Modified Hadoop 0.23.1 NameNode with single node LevelDB = Use a locking service that parallels the namespace
" Store namespace & blocks map in LevelDB and inode cache = Read lock root to parent directory of targeted directory
" Lookup in LevelDB for misses in inode cache = Write lock only the directory in question
" 6 clients, 2 threads each mkdir + create " Be optimistic (fast) for file operations
" |evelDB stores on tmpfs to factor out disk performance = Try with no locks at all for files, eg. /a/b/c/f1 succeeds
" High overhead for using LevelDB = |f operation fails, check for/wait on parent lock (recur up
" Inode cache codepath is too long: redesign cache as needed) e.g., client2 waits for /a/b/c to be created before
= Negative lookups for file creates: bloom filter helps creating f2
Throughput of metadata operation in LevelDB NN Latency for file create = Write-ahead-log and primary/backup NN for failures
P~~~ | * Clientfailures detected by reading zookeeper lock
g ~r b LR A R i A " Zookeeper lock is also a write-ahead log
S 1500 [T — I e .
b e By | hardFSExperiment
ﬁ ol | L velpg hEmenode —— S B Lﬁi’:ﬁ?ﬂ,ﬁ * ShardFS implemented on Hadoop 0.23.1
Moo v e | T o DB rendamiten = (Client-side implementation,tree locking w/zookeeper
"0 50 100 1'5_0 ?60 250 300 350 400 "0 60 120 1%30 _2210 300 360 420 480 _ Hash(fu”path) as the sharding function
. Time ln.seconds Time in seconds . WOrkIOad
Future:Distributed Out-of-core Namenodes = 2 threads/client each mkdir and create files w/o conflicts
= Use distributed table as the global storage for metadata " 6clients/namenode
= Higher latency: " Throughput almost increases linearly
= Longer code path, more than one RPC, disk access " Higher mkdir latencies
= Auto capacity and load balancing, uncontrolled by HDFS oopg P o metedta operstionsn St PHerage MHCITISIONY Average file create latency
" Interesting balancing questions: should HDFS control g — e e P
balancing, or ignore it and allow table to handle it? g woop 2 Nemenodes & | 60 | 3l
" Explore replicated state machine (EPaxos) for metadata O I
" Fast, scalable Epaxos: faster failover than primary/backup é o I Y 1
o o w0 ! 2 4 s
\ Carne ie) “ Number of Namenodes Number of Namenodes
i Mellon Geergia (inel) ¥QIERINCETON {1 Berkeley,
miel Seience & Technology University ech |/ n

Center for Cloud Computing

