VQUERY: TRACKING CONFIGURATION + PERFORMANCE Ilari Shafer, Charlene Zang, Greg Ganger (Carnegie Mellon University), Snorri Gylfason (VMware)

OVERVIEW

- **Performance monitoring in IaaS datacenters**
- Resources shared by many VMs
- Applications may span multiple VMs
- VM location/resources change dynamically
- vQuery: incorporate configuration monitoring
 - Track migration, resizing, etc. and performance effects
 - VMs as black boxes, monitored externally

Collect configuration and performance data

cpu.usage.average mem.swapinRate.average disk.usage.average

- Configuration across different laaS platforms
 - Conceptually similar: entities, relationships
 - Details vary: choice of configuration properties
 - Examples: VMware vSphere, OpenStack, Tashi, ...

	Entity Type	vSphere Configuration Properties
	VM	<i>host system, networks, datastore,</i> name, annotation, memory, vCPUs, CPU allocation (reservation/limit/shares), virtual disk layout, guest OS type, guest OS state, IP address,
	Host	network, CPU (frequency, number of cores and packages), memory size, power state,
	Network	name, fence mode, parent, DNS (addresses, suffix), netmask, IP ranges,
	Datastore	name, capacity, free space, type, url,

- Configuration changes are frequent
 - Some affect performance many do not
 - Primary goal: capture and mine these changes

- VIVI etc...
- *etc...*
- Fine-granularity, long-term storage for both
- Goal: integrate configuration in diagnosis, analysis, UI

OBSERVATIONS FROM INITIAL DEPLOYMENT

- Deployed on CMU vCloud, OpenCirrus (Tashi)
- Config changes co-occur: significant "major" events
 - Noisy, particularly due to some parameters

Example source of perf-affecting, root-cause changes

CONFIGURATION TRACKING APPROACH

- Designed for diverse, historical, relational config data
- Collect configuration continuously, non-invasively
 - Capture each change, not snapshots

- Maintain config in time-evolving property graph

- - Migrations: manifest in perf. changes on VMs, hosts
 - Difficulty ahead: migrations "look" very different

CONTINUING WORK + CHALLENGES

- Find config changes that cause performance changes
 - Filter raw configuration changes
 - Identify significant performance changes
 - Automatically correlate events + perf changes
- Provide intuition through visualization; mockup UI:

