VIRTUAL APPLIANCE DELIVERY OVER WIDE AREA NETWORKS
Yoshihisa Abe and Mahadev Satyanarayanan (Carnegie Mellon University)

BACKGROUND

- Virtual appliances
 - Pre-configured, ready-to-go virtual machine (VM) images
 - Free users from installing and configuring individual VMs, software etc.
- Contains entire software and configurations
- OS, applications, dependencies (libraries)
- All necessary elements for certain purpose packaged in VM
- Often used for cloud services
- Virtual appliances for end users have additional value
 - Try new software easily
 - No need to manage it on their own
 - Use software temporarily
 - Rent otherwise expensive software
 - Use software environment only when needed

APPROACH

- Take advantage of properties specific to virtual appliances
 - Fixed delivered images
 - Starting point of VM execution is well-known
 - Specific user workloads
 - Each virtual appliance is constructed for use of specific application(s)
- Use VM execution traces to estimate working set for each virtual appliance
 - Prioritize important parts of working set upon transfer so VM can start early
- Deal with missed VM state with prefetching by read-ahead

PRELIMINARY EXPERIMENTS

- Memory and disk footprint for varied workloads
 - Represents minimum VM state amount required

- Video playback performance
 - Initial wait time traded off for good FPS preservation
 - VM state transferred without compression

<table>
<thead>
<tr>
<th></th>
<th>Memory (unit: MB)</th>
<th>Disk (unit: MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accessed</td>
<td>Compressed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Separately)</td>
</tr>
<tr>
<td>Accessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Playback</td>
<td>76.6</td>
<td>34.6</td>
</tr>
<tr>
<td>Video Editing</td>
<td>97.1</td>
<td>39.9</td>
</tr>
<tr>
<td>LibreOffice (Writer)</td>
<td>101.7</td>
<td>32.0</td>
</tr>
</tbody>
</table>

MOTIVATION

- Fast virtual appliance delivery to end users over wide-area networks (WANs)
 - Assumes provision of all VM state necessary for user tasks
 - No VM state cached on client or access through remote storage etc.
- Work in VM state transfer has mainly targeted good network environments (= LANs)
 - Except Internet Suspend/Resume (CMU), Collective (Stanford) etc.
- Key challenges
 - Deliver virtual appliances quickly
 - Minimize user wait
 - Preserve good VM performance
 - Minimize disruption of VM execution once started
- Efficient VM state transfer to clients
 - VM execution with partial state
 - Whole VM transfer, resulting in tens of GB, is usually prohibitive over WANs
 - Start VM execution as soon as necessary state is available

SYSTEM ARCHITECTURE

- Client implemented as modified qemu-kvm
- Memory and disk images passed through FUSE
- Lightweight TCP server handling state prefetch/fault-in requests

WORK IN PROGRESS

- Refining working set estimation
 - Balancing trade-off between initial wait and VM performance
 - More wait while transferring larger working set leads to better expected performance
- Using VM execution traces gathered through collection facility
 - Automated VM launch with instrumentation, on remote host
 - Target application is used in various ways while traces are collected
- Performance evaluation with virtual appliance images
 - System-level metrics: VM stall, state hit/miss rates etc.
 - Application-level metrics: FPS, timings of interactive actions etc.