y

ldentifying and Mitigating Memory Resource Contention to Accelerate Data-Intensive Workloads

Justin Meza* Jichuan Changt Parthasarathy Ranganathant Onur Mutlu* (*CMU, THP Labs)

Motivation / Background Evaluation
» Parallel programs do multiple tasks at the same time SYSTEM
» Three fundamental bottlenecks in parallel code portion = 8-cores, 32MB DRAM cache, 8GB PCM main memory
= Synchronization (locks, barriers, shared data)
» L oad imbalance (tasks with more work) WORKLOADS
= Resource contention (task prioritization) » Traditional parallel programs (PARSEC)
» Past work has used synchronization and load imbalance = New, data-intensive workloads (GraphLab, MapReduce,
bottlenecks to determine thread criticality Graph500)
= |n this work, we focus on using resource contention
bottlenecks to identify and accelerate critical threads CACHING POLICIES
» Baseline: Cache every accessed block
Adaptive Critical Thread Selection (ACTS) = CacheMiss: Cache blocks from thread with most cache
miss latency
KEY IDEA » Region: Cache blocks from the top two hottest regions
» Track resource contention in regions of memory (hot of memory
regions have high memory request delay) » ACTS: Cache blocks from thread with the most hot
= |dentify threads that access hot regions as critical region accesses

* Prioritize predicted critical threads In hardware policies
(caching, scheduling, prefetching, etc.) each quantum

Main Memory
Regions

| Thread
1. Track Rgglon Criticality
Contention
Table

2. Select Hot
Regions 4. Accelerate
Critical Threads
Region 3. Track Thread
Contention Accesses to
Table ~ Hot Regions

Adaptive Critical Thread Selection (ACTS)

» 11% better performance than baseline

» 6% better performance than CacheMiss-based policy
» 29% better energy efficiency due to only migrating data 100% —
for critical thread

15% — = 120% mm

10%

73%

50%
5%

29%
0% 0%

Carnegie :
Mellon Georgia @ In tel®)
Intel Science & Technology UniVBI'Sity TeCh == p

Center for Cloud Computing

N PRINCETON
uNIvERsITY UC Berkeley ®

	Slide Number 1

