
Evaluation

Identifying and Mitigating Memory Resource Contention to Accelerate Data-Intensive Workloads
Justin Meza* Jichuan Chang† Parthasarathy Ranganathan† Onur Mutlu* (*CMU, †HP Labs)

Motivation / Background

 Parallel programs do multiple tasks at the same time
 Three fundamental bottlenecks in parallel code portion
 Synchronization (locks, barriers, shared data)
 Load imbalance (tasks with more work)
 Resource contention (task prioritization)

 Past work has used synchronization and load imbalance
bottlenecks to determine thread criticality
 In this work, we focus on using resource contention
bottlenecks to identify and accelerate critical threads

Adaptive Critical Thread Selection (ACTS)

KEY IDEA
 Track resource contention in regions of memory (hot
regions have high memory request delay)
 Identify threads that access hot regions as critical
 Prioritize predicted critical threads in hardware policies
(caching, scheduling, prefetching, etc.) each quantum

SYSTEM
 8-cores, 32MB DRAM cache, 8GB PCM main memory

WORKLOADS
 Traditional parallel programs (PARSEC)
 New, data-intensive workloads (GraphLab, MapReduce,
Graph500)

CACHING POLICIES
 Baseline: Cache every accessed block
 CacheMiss: Cache blocks from thread with most cache
miss latency
 Region: Cache blocks from the top two hottest regions
of memory
 ACTS: Cache blocks from thread with the most hot
region accesses

Adaptive Critical Thread Selection (ACTS)

 11% better performance than baseline
 6% better performance than CacheMiss-based policy
 29% better energy efficiency due to only migrating data
for critical thread

	Slide Number 1

