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Motivation / Background Evaluation
» Parallel programs do multiple tasks at the same time SYSTEM
» Three fundamental bottlenecks in parallel code portion = 8-cores, 32MB DRAM cache, 8GB PCM main memory
= Synchronization (locks, barriers, shared data)
» L oad imbalance (tasks with more work) WORKLOADS
= Resource contention (task prioritization) » Traditional parallel programs (PARSEC)
» Past work has used synchronization and load imbalance = New, data-intensive workloads (GraphLab, MapReduce,
bottlenecks to determine thread criticality Graph500)
= |n this work, we focus on using resource contention
bottlenecks to identify and accelerate critical threads CACHING POLICIES
» Baseline: Cache every accessed block
Adaptive Critical Thread Selection (ACTS) = CacheMiss: Cache blocks from thread with most cache
miss latency
KEY IDEA » Region: Cache blocks from the top two hottest regions
» Track resource contention in regions of memory (hot of memory
regions have high memory request delay) » ACTS: Cache blocks from thread with the most hot
= |dentify threads that access hot regions as critical region accesses

* Prioritize predicted critical threads In hardware policies
(caching, scheduling, prefetching, etc.) each quantum
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Adaptive Critical Thread Selection (ACTS)

» 11% better performance than baseline

» 6% better performance than CacheMiss-based policy
» 29% better energy efficiency due to only migrating data 100% —
for critical thread
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