
Evaluation

Identifying and Mitigating Memory Resource Contention to Accelerate Data-Intensive Workloads
Justin Meza* Jichuan Chang† Parthasarathy Ranganathan† Onur Mutlu* (*CMU, †HP Labs)

Motivation / Background

 Parallel programs do multiple tasks at the same time
 Three fundamental bottlenecks in parallel code portion
 Synchronization (locks, barriers, shared data)
 Load imbalance (tasks with more work)
 Resource contention (task prioritization)

 Past work has used synchronization and load imbalance
bottlenecks to determine thread criticality
 In this work, we focus on using resource contention
bottlenecks to identify and accelerate critical threads

Adaptive Critical Thread Selection (ACTS)

KEY IDEA
 Track resource contention in regions of memory (hot
regions have high memory request delay)
 Identify threads that access hot regions as critical
 Prioritize predicted critical threads in hardware policies
(caching, scheduling, prefetching, etc.) each quantum

SYSTEM
 8-cores, 32MB DRAM cache, 8GB PCM main memory

WORKLOADS
 Traditional parallel programs (PARSEC)
 New, data-intensive workloads (GraphLab, MapReduce,
Graph500)

CACHING POLICIES
 Baseline: Cache every accessed block
 CacheMiss: Cache blocks from thread with most cache
miss latency
 Region: Cache blocks from the top two hottest regions
of memory
 ACTS: Cache blocks from thread with the most hot
region accesses

Adaptive Critical Thread Selection (ACTS)

 11% better performance than baseline
 6% better performance than CacheMiss-based policy
 29% better energy efficiency due to only migrating data
for critical thread

	Slide Number 1

