MEMC3: MEMCACHE W/ CLOCK AND CONCURRENT CUCKOO HASHING Bin Fan, David G. Andersen (Carnegie Mellon University), Michael Kaminsky (Intel Labs Pittsburgh)

MEMCACHED BACKGROUND

DRAM-based object cache

- Speed up web applications
- Alleviate database load.

OPTIMIZATIONS

COMPACT DATA STRUCTURES Perf

- Replace chaining with "optimistic cuckoo hashing" [2]
 - Max hash table occupancy \rightarrow 93%
 - Support single-writer/multi-reader access
- Change linked list-based LRU to CLOCK
 - Replace two pointers with a reference bit for each object

High space overhead

often used for small objects [1] 100B object + 56B header => overhead > 50%

OPTIMISTIC CUCKOO HASH TABLE

- Map each key to two buckets
- Lookup: 3 memory reads
- Insert: O(1) w/ recursive displacement
- Increment key version before/after each displacement
- Compare key version snapshots before/after read

ARCHITECTURE-AWARE OPTIMIZATIONS

- CPU cache locality
- Instruction/memory level parallelism

WORKLOAD-AWARE OPTIMIZATIONS

- Read mostly (e.g., > 98% [1])
- Small objects dominate

SYSTEM TUNING Iviem

- Pin thread on one core
- Increase page size: fewer TLB misses
- Purpose-built memcmp for small keys: compare 32bit at a time

CONCLUSIONS

- Memcached is bottlenecked by its core data structures when scaling to multiple cores
- Compact and concurrent algorithms improve significantly memcached throughput and space efficiency.

EVALUATION

HASHTABLE PERFORMANCE

- 6 threads accessing a hashtable (~1GB)
- Results are independent of key-value size

[1] Atikoglu at el., "Workload analysis of a large-scale key-value store", SIGMERICS2012 [2] Lim at el., "SILT: A memory-efficient, high-performance key-value store ", SOSP2011

END-TO-END PERFORMANCE

- 16 B key + 32 B value, 95% get + 5% set
- 50 remote clients, one 10Gb NIC on server
 - Store 25% more objects
 - Scales to 12 cores with 4.3 MOPS or

~3x improvement

Tech

Georgia

Carnegie

University

Mellon

PRINCETON UNIVERSITY **Intel**

UC Berkeley.

