MEMC3: MEMCACHE W/ CLOCK AND CONCURRENT CUCKOO HASHING

Bin Fan, David G. Andersen (Carnegie Mellon University), Michael Kaminsky (Intel Labs Pittsburgh)

MEMCACHED BACKGROUND

DRAM-based object cache CORE DATA STRUCTURES
= Speed up web applications

= Alleviate database load.

Poor multi-core scalability

Hash table Doubly-linked-list
= serialized hashtable and LRU w/ chaining (for each slab)
operations LRU head
Webserver Webserver Webserver " tput doesn’t scale ¢ IK ‘V ‘ ' ¢
@ :’/ K|V
get(x) set(y,"123") get(z) / w
High space overhead :\ /
" often used for small objects [1] \ \ v 4
Memcached Memcached = 100B object + 56B header => o xg ML >‘K ‘v ‘ |
server server overhead > 50% \ -7
T — T — /’,,"
on miss\\ ,6n miss .;. w
\ /
A ¥
= = OPTIMISTIC CUCKOO HASH TABLE
Database
S ———— » Map each key to two buckets
= Lookup: 3 memory reads
OPTIMIZATIONS = Insert: O(1) w/ recursive displacement
m m * Increment key version before/after each displacement
COMPACT DATA STRUCTURES = Compare key version snapshots before/after read
= Replace chaining with “optimistic cuckoo hashing” [2] Cuckoo hash table
= Max hash table occupancy = 93% key version
» Support single-writer/multi-reader access counters —
» Change linked list-based LRU to CLOCK — j\f\k — =2
= Replace two pointers with a reference bit for each object /“; N
* . : : AN
e Y bij
ARCHITECTURE-AWARE OPTIMIZATIONS [ 4il oy et o h] (2
' — e ey
* CPU cache locality \ L value
* Instruction/memory level parallelism | 2 b7 ¢ d | metadata
WORKLOAD-AWARE OPTIMIZATIONS m m ——
* Read mostly (e.g., >98% [1]) EVALUATION
= Small objects dominate
SYSTEM TUNING m HASHTABLE PERFORMANCE
* Pin thread on one core o 21 90% lookup == 73 1
* Increase page size: fewer TLB misses o5 20 1714 a7 (22
c & ! 14.61
* Purpose-built memcmp for small keys: 28 *° 1204 a8
compare 32bit at a time sc |
E Z - &184 2.29 |1'31 |1'45 2.41
Dy P ey g o ", "y ooy, P, ey g o ", "y
CONCLUSIONS "y e © ety o Y M
» Memcached is bottlenecked by its core data structures when * 6 threads accessing a hashtable (~1GB)
scaling to multiple cores = Results are independent of key-value size
= Compact and concurrent algorithms improve significantly END-TO-END PERFORMANCE

memcached throughput and space efficiency. . 16 B key + 32 B value, 95% get + 5% set

[1] Atikoglu at el., “Workload analysis of a large-scale key-value store”, SIGMERICS2012 * 50 remote clients, one 10Gb NIC on server
[2] Lim at el., “SILT: A memory-efficient, high-performance key-value store 7, SOSP2011 = Store 25% more objects
= Scales to 12 cores with 4.3 MOPS or
~3xX improvement
Carnegie

Georgia - @)
Mellon Te%h & ( |nte|

University

WU UC Berkeley.

Intel Science & Technology
Center for Cloud Computing




