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MEMCACHED BACKGROUND

DRAM-based object cache CORE DATA STRUCTURES
= Speed up web applications

= Alleviate database load.

Poor multi-core scalability

Hash table Doubly-linked-list
= serialized hashtable and LRU w/ chaining (for each slab)
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S ———— » Map each key to two buckets
= Lookup: 3 memory reads
OPTIMIZATIONS = Insert: O(1) w/ recursive displacement
m m * Increment key version before/after each displacement
COMPACT DATA STRUCTURES = Compare key version snapshots before/after read
= Replace chaining with “optimistic cuckoo hashing” [2] Cuckoo hash table
= Max hash table occupancy = 93% key version
» Support single-writer/multi-reader access counters —
» Change linked list-based LRU to CLOCK — j\f\k — =2
= Replace two pointers with a reference bit for each object /“; N
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* Read mostly (e.g., >98% [1]) EVALUATION
= Small objects dominate
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» Memcached is bottlenecked by its core data structures when * 6 threads accessing a hashtable (~1GB)
scaling to multiple cores = Results are independent of key-value size
= Compact and concurrent algorithms improve significantly END-TO-END PERFORMANCE

memcached throughput and space efficiency. . 16 B key + 32 B value, 95% get + 5% set

[1] Atikoglu at el., “Workload analysis of a large-scale key-value store”, SIGMERICS2012 * 50 remote clients, one 10Gb NIC on server
[2] Lim at el., “SILT: A memory-efficient, high-performance key-value store 7, SOSP2011 = Store 25% more objects
= Scales to 12 cores with 4.3 MOPS or
~3xX improvement
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