
MEMC3: MEMCACHE W/ CLOCK AND CONCURRENT CUCKOO HASHING
Bin Fan, David G. Andersen (Carnegie Mellon University), Michael Kaminsky (Intel Labs Pittsburgh)

MEMCACHED BACKGROUND

OPTIMIZATIONS

OPTIMISTIC CUCKOO HASH TABLE

CONCLUSIONS

EVALUATION

DRAM-based object cache
▪ Speed up web applications
▪ Alleviate database load.

▪ Map each key to two buckets
▪ Lookup: 3 memory reads
▪ Insert: O(1) w/ recursive displacement
▪ Increment key version before/after each displacement
▪ Compare key version snapshots before/after read

HASHTABLE PERFORMANCE

▪ Memcached is bottlenecked by its core data structures when
scaling to multiple cores

▪ Compact and concurrent algorithms improve significantly
memcached throughput and space efficiency.

▪ 6 threads accessing a hashtable (~1GB)
▪ Results are independent of key-value size

END-TO-END PERFORMANCE
▪ 16 B key + 32 B value, 95% get + 5% set
▪ 50 remote clients, one 10Gb NIC on server

▪ Store 25% more objects
▪ Scales to 12 cores with 4.3 MOPS or

 ~3x improvement

CORE DATA STRUCTURES

[1] Atikoglu at el., “Workload analysis of a large-scale key-value store”, SIGMERICS2012
[2] Lim at el., “SILT: A memory-efficient, high-performance key-value store ”, SOSP2011

Memcached
server

get(x) set(y,"123") get(z)

Database

Memcached
server

on misson miss

Webserver Webserver Webserver

Hash table
w/ chaining

K V

K V

K V K V

K V

LRU header

Doubly-linked-list
(for each slab)

High space overhead
 often used for small objects [1]
 100B object + 56B header =>

overhead > 50%

Poor multi-core scalability
 serialized hashtable and LRU

operations
 tput doesn’t scale

Perf

Mem

Cuckoo hash table

tag

key version
counters

key x
key

KV object

value
metadatab

h

m

a c d

i

fe g

kj l

n o

 0

 5

 10

 15

 20

 25

chaining
+hugepage

+int keycmp

cuckoo
+tag

+opt locking

+2path
chaining

+hugepage

+int keycmp

cuckoo
+tag

+opt locking

+2path

Th
ro

ug
hu

t
(m

ill
io

n
re

qs
 p

er
 s

ec
)

100% lookup

1.58 1.84 2.29

12.04

17.14

23.86 23.87
90% lookup

1.31 1.45 2.41

11.48

14.61
16.67

18.22

COMPACT DATA STRUCTURES
▪ Replace chaining with “optimistic cuckoo hashing” [2]

▪ Max hash table occupancy → 93%
▪ Support single-writer/multi-reader access

▪ Change linked list-based LRU to CLOCK
▪ Replace two pointers with a reference bit for each object

ARCHITECTURE-AWARE OPTIMIZATIONS
▪ CPU cache locality
▪ Instruction/memory level parallelism

WORKLOAD-AWARE OPTIMIZATIONS
▪ Read mostly (e.g., > 98% [1])
▪ Small objects dominate

SYSTEM TUNING
▪ Pin thread on one core
▪ Increase page size: fewer TLB misses
▪ Purpose-built memcmp for small keys:

compare 32bit at a time

Perf Mem

Perf

Perf Mem

Mem

