
LAZYTABLES: DISTRIBUTED DATA FOR MACHINE LEARNING
Jim Cipar, Qirong Ho, Greg Ganger, Eric Xing (Carnegie Mellon University)

INTERMEDIATE ML DATA LAZYTABLES DESIGN

INITIAL RESULTS
SUPPORTING FRESHNESS REQUIREMENTS

CONSISTENCY CONTINUING EXPLORATIONS

▪ Intermediate data much bigger than input and output
▪ Topic modeling: 100GB input, >1TB intermediate, 10GB output
▪ Usually large, sparse tables of integers

▪ Key problem: table performance determines efficiency
▪ Hundreds of thousands of updates per second per thread
▪ Too fast to lock mutex on every update
▪ Self-commutative updates: increment, max, multiply...

▪ Key insight: algorithms tolerate staleness
▪ Don't need to see other thread's updates immediately
▪ But, freshness requires can grow with progress

▪ Distributed table structure
▪ Multiple layers of caches and operation logs

▪ Oplog: log of updates (e.g. "increment X by 5")
▪ Thread-local, per-process, in-memory, on-disk
▪ Closer layers faster but have staler data

▪ Write-back caching allows for update batching

▪ Application tested: document classification
▪ LDA algorithm implemented with Gibbs sampling

▪ Tested batching for 1 process on 8-core server
▪ "Locking" used reader-writer locks on whole table
▪ Batching 1024 updates in thread-local storage

▪ Read operations look at staleness of cache
▪ If too stale, read next level cache ("freshness miss")
▪ For consistency, updates flushed on freshness miss

▪ Read-my-writes important for many algorithms
▪ Atomic updates to multiple rows or tables

▪ Necessary for typical machine learning algorithms?
▪ Can this be supported efficiently?

▪ When updates are sharded, enforce canonical ordering

▪ Avoiding locks for updates is crucial to performance

▪ Each thread can choose cache layer for each access
▪ Faster caches generally hold staler data
▪ Oplogs hold updates from local thread or process

▪ Can be ignored on read, or used for read-my-writes

▪ Testing implementation tradeoffs
▪ E.g. related to consistency model

▪ Exploring fit to other ML algorithms
▪ E.g. Image/video segmentation, community detection

▪ Part of larger "Big Learning" project
▪ Systems support for advanced ML

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

Pe
rf

or
m

an
ce

 (i
te

ra
tio

ns
/s

)

Number of Cores and Threads

single-threaded
locking

batching

A typical ML algorithm

Input Data
size N

Large Intermediate
Program State
O(N2) or even larger,

but usually sparse

 1. Initialization

2. Many iterated
updates to program

state; changes are usually
small/incremental

Output Results
usually size O(N)

3. Output answer after

iterative procedure stops
improving result quality

Thread
cache

Thread
oplog

Process
cache

Process
oplog

Shared
shard
server

Shared
shard
server

Shared
shard

servers

Fast,stale Fresh,slow

ProcessProcessProcess

Thread 1
(on core 1)

Read Write

Thread N
(on core N)

Read Write

Read Write

Network

Shared
shard 1

Shared
shard 2

Shared
shard 3

Read/write

Thread
cache

Thread
oplog

Thread
cache

Thread
oplog

Process
cache

Process
oplog

...

