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INTERMEDIATE ML DATA LAZYTABLES DESIGN

INITIAL RESULTS
SUPPORTING FRESHNESS REQUIREMENTS

CONSISTENCY CONTINUING EXPLORATIONS

▪ Intermediate data much bigger than input and output 
▪ Topic modeling: 100GB input, >1TB intermediate, 10GB output
▪ Usually large, sparse tables of integers

▪ Key problem: table performance determines efficiency
▪ Hundreds of thousands of updates per second per thread
▪ Too fast to lock mutex on every update
▪ Self-commutative updates: increment, max, multiply...

▪ Key insight: algorithms tolerate staleness
▪ Don't need to see other thread's updates immediately
▪ But, freshness requires can grow with progress 

▪ Distributed table structure
▪ Multiple layers of caches and operation logs

▪ Oplog: log of updates (e.g. "increment X by 5")
▪ Thread-local, per-process, in-memory, on-disk
▪ Closer layers faster but have staler data 

▪ Write-back caching allows for update batching

▪ Application tested: document classification 
▪ LDA algorithm implemented with Gibbs sampling

▪ Tested batching for 1 process on 8-core server
▪ "Locking" used reader-writer locks on whole table
▪ Batching 1024 updates in thread-local storage

▪ Read operations look at staleness of cache
▪ If too stale, read next level cache ("freshness miss")
▪ For consistency, updates flushed on freshness miss

▪ Read-my-writes important for many algorithms
▪ Atomic updates to multiple rows or tables

▪ Necessary for typical machine learning algorithms?
▪ Can this be supported efficiently?

▪ When updates are sharded, enforce canonical ordering

▪ Avoiding locks for updates is crucial to performance

▪ Each thread can choose cache layer for each access
▪ Faster caches generally hold staler data
▪ Oplogs hold updates from local thread or process

▪ Can be ignored on read, or used for read-my-writes 

▪ Testing implementation tradeoffs
▪ E.g. related to consistency model

▪ Exploring fit to other ML algorithms
▪ E.g. Image/video segmentation, community detection

▪ Part of larger "Big Learning" project
▪ Systems support for advanced ML
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