LAZYTABLES: DISTRIBUTED DATA FOR MACHINE LEARNING

Jim Cipar, Qirong Ho, Greg Ganger, Eric Xing (Carnegie Mellon University)

INTERMEDIATE ML DATA LAZYTABLES DESIGN

A typical ML algorithm = Distributed table structure
a N\ = Multiple layers of caches and operation logs
| ivialiation| LArJE Intermediate = Oplog: log of updates (e.g. "increment X by 5")
Inpgt Data > Program State = Thread-local, per-process, in-memory, on-disk
size N O(N?) or even larger, = Closer layers faster but have staler data
but usually sparse . . .
_ Y, = Write-back caching allows for update batching

2. Many iterated

updates to program Process h
state; changes are usually Thread 1 Thread N
/ small/incremental (on core 1) (on core N)
/N /N
Output Results < / Read Write Read Write

usually size O(N)

3. Output answer after SN SN
iterative procedure stops Thread :Thread Thread : Thread
improving result quality cache : oplog cache : oplog
= Intermediate data much bigger than input and output \ >< /
= Topic modeling: 100GB input, >1TB intermediate, 10GB output Read Write
= Usually large, sparse tables of integers f \ \
. « o Process : Process
= Key problem: table performance determines efficiency cache | oplog

* Hundreds of thousands of updates per second per thread

= Too fast to lock mutex on every update "

= Self-commutative updates: increment, max, multiply... e
= Key insight: algorithms tolerate staleness

= Don't need to see other thread's updates immediately

Shared | Shared | Shared

* But, freshness requires can grow with progress shard 1 |shard 2 |shard 3
INITIAL RESULTS
= Application tested: document classification SUPPORTING FRESHNESS REQUIREMENTS
= LDA algorithm implemented with Gibbs sampling
= Tested batching for 1 process on 8-core server = Each thread can choose cache layer for each access
= "Locking" used reader-writer locks on whole table = Faster caches generally hold staler data
= Batching 1024 updates in thread-local storage = Oplogs hold updates from local thread or process
0.7 , \ \ \ = Can be ignored on read, or used for read-my-writes
single-threaded —4—

. locking —e—

Q 0.6 - batching —— . Thread Process

S 05| oplog oplog Shared

=2t (PPPPREPFEEE SR SETTTTPREREE shard

T 04| Thread Process servers

P cache cache

= 0.3 | —

S 02 < ;

9 Fast,stale Fresh,slow

g 017

0 2 3 4 5 6 = Read operations look at staleness of cache
Number of Cores and Threads .
= |f too stale, read next level cache ("freshness miss")

" Avoiding locks for updates is crucial to performance » For consistency, updates flushed on freshness miss
CONSISTENCY CONTINUING EXPLORATIONS

= Read-my-writes important for many algorithms
= Atomic updates to multiple rows or tables
= Necessary for typical machine learning algorithms?
= Can this be supported efficiently?
= When updates are sharded, enforce canonical ordering

= Testing implementation tradeoffs

= E.g. related to consistency model
= Exploring fit to other ML algorithms

= E.g. Image/video segmentation, community detection
= Part of larger "Big Learning"” project

= Systems support for advanced ML

C [- - @
Vot © Georgia intel)

University

WU UC Berkeley.

Intel Science & Technology
Center for Cloud Computing

