
LANDSLIDE: SYSTEMATIC DYNAMIC RACE DETECTION IN KERNEL-SPACE
Ben Blum, Jiri Simsa, Garth Gibson (Carnegie Mellon University)

MOTIVATION & APPROACH LANDSLIDE DESIGN

IDENTIFYING BUGS

CASE STUDY: THE PEBBLES KERNEL

FUTURE WORK

RELATED WORK

▪ Concurrency testing in kernel is harder than in user-space.
▪ Long-running stress tests are de facto testing method

▪ Exposes race conditions at random
▪ "If a preemption occurs at just the right time..."

▪ Cryptic panic messages or machine reboots
▪ Attempting to exercise as many internal states as possible

▪ Assumptions that describe user-space do not hold in the kernel
▪ Can instead leverage common kernel abstractions

▪ Kernel stacks, runqueues, dynamic memory allocator
▪ Use these to make educated guesses for when to preempt
▪ Provide helpful debugging information upon finding bugs

▪ False-negative-oriented approach
▪ Definite bug-detection techniques

▪ Deadlock
▪ Use-after-free, double-free, etc
▪ Kernel panics, assertion failures

▪ Probable bug-detection techniques
▪ Infinite loops and livelock

▪ Use prior structure of execution
tree to judge progress

EDUCATION
▪ Use as a teaching tool

▪ Pebbles (CMU 15-410)
▪ Change the specification to ease implementing kernel model

▪ Pintos (Stanford)
▪ Use as a grading tool

▪ TAs of 15-410 could use Landslide to augment their bug-finding
ability

LINUX
▪ Virtualisation

▪ Compared to Simics, lose a lot of information
▪ Modelling device drivers

▪ Device interrupts as a new source of nondeterminism
▪ SMP: Enhance concurrency model to test multicore execution

▪ Controls system nondeterminism using timer interrupts
▪ When test case ends, rewinds machine state to a past "decision

point" and force a different thread to run
▪ Uses dynamic partial order reduction to prune state space

▪ 15-410: Operating System Design and Implementation
▪ Project 3: students write a kernel in 6 weeks
▪ "Pebbles" is a minimal UNIX-like system call specification

USER STUDY
▪ Met with five groups of students in spring 2012.
▪ Of those, four groups invested enough time to get Landslide working

▪ 100 minutes of instrumentation time on average
▪ All groups found bugs using Landslide; two found race conditions

▪ Systematic testing
▪ MaceMC: Killian et al. NSDI 2007

▪ Liveness properties (annotation), random walking
▪ CHESS: Musuvathi et al. PLDI 2007

▪ Iterative context bounding: search with fewer preemptions first
▪ MoDist: Yang et al. NSDI 2009

▪ Network and disk model checking for distributed systems
▪ dBug: Simsa et al. SSV 2010, RV 2012

▪ Partial order reduction, libc interposition
▪ SimTester: Yu et al. VEE 2012

▪ Simics, single interrupt injection, focus on device drivers
▪ Data race detection

▪ Eraser: Savage et al. ACM TOCS 1997
▪ Data race detection with lock-set tracking and annotations

▪ DataCollider: Erickson et al. OSDI 2010
▪ Random memory access sampling, targetted at kernel code

▪ RacePro: Laadan et al. SOSP 2011
▪ Inter-process races with system calls as points of interest

Thread 1 Thread 2
x = 5

x++;
x = 6

y = 5

y--;

y = 4

Thread 1 Thread 2
x = 5

x++;

x = 6

y = 5

y--;
y = 4

... ...

...

1

12

2

...

... ...

...

... ...

Guest Kernel

Simulated execution
tell_landslide()

Timer interrupts

Simics

Landslide

Decision Tree

SchedulerMemory
Tracking

Test
Lifecycle

Tree Explorer

Kernel
Instrumentation

Runqueues

[...]

