1. DRAM Bank Conflicts

Bank conflict!

- Large latency

2. Timeline of DRAM Bank Conflicts

- Four requests to the **same** DRAM bank
 - WR, WR, RD, RD
 - Large latency due to 3 problems:
 1. Serialization of requests
 2. Write penalty after WR request
 3. "Thrashing" of row-buffer

- WR, RD → time (Short latency when four reqs are to different banks)
- WR, RD → time

3. Our Goal

- **Goal:** Cost-effectively mitigate the detrimental effects of bank conflicts
- **Naïve Solution:** Simply add more banks
 - Very expensive

4. Two Key Observations

1. A DRAM bank is divided into **subarrays**
 - Each subarray has a **local row-buffer**

2. **Subarrays are mostly independent**...
 - Except when sharing **global structures**

5. Key Idea

Reduce the sharing of...

1. **Global decoder:** enable parallel access to multiple subarrays
2. **Global row-buffer:** utilize multiple local row-buffers concurrently

6. Mechanism: **MASA**

Multitude of Activated Subarrays

Add two latches to each subarray

1. **Subarray Address Latch**
 - Stored per-subarray row-address
2. **Designated-Bit Latch**
 - Connects one subarray’s local row-buffer to global row-buffer

IPC Increase

- **Baseline** vs **MASA**
 - Baseline: 1
 - MASA: +13%

Row-Buffer Hit-Rate

- Baseline: 90%
 - MASA: +13%

Die-Size

- **Baseline** vs **MASA**
 - Die-Size < 0.15%
 - MASA: 0.15% 36.3%

Normalized Dynamic Energy

- Baseline: 1
 - MASA: -19%