
Analyzing and Optimizing GPU Communication and Computation
Wenhao Jia (Princeton Univ), Kelly A. Shaw (Univ of Richmond), Margaret Martonosi (Princeton Univ)

Automated GPU Design Space Exploration Optimizing GPU Cache Utility

Our Work: Build GPU performance models from random design samples using automated

parameter selection that can account for parameter pair interactions.

ru
n
ti

m
e

runtime ~ param1 + param2 + param1 : param2

In a hypothetical 2-parameter design space, the 3 steps

are shown color-coded.

current model M = {}

unused parameter set T = {P1, P2, …, Pn}

while T is not empty

for each Pi in T

generate a tentative model Mi = M + Pi
select the Mimax with the highest adjusted R^2

if Mimax’s adjusted R2 > M’s R2

M = Mimax, T = T - Pi
for each Pj (j != i) already in M

if interaction Pi:Pj is significant

M = M + Pi:Pj
else

return M

Initialization

If the next most

significant factor

indeed affects

runtime, include it

in the model

Else exit the

routine

Also test its

interactions with

included factors

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

M
e
a

n
 R

e
la

ti
v
e

 E
rr

o
r

(%
)

Training sample size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

M
a

x
 R

e
la

ti
v
e

 E
rr

o
r

(%
)

Training sample size

AES
AES-adj
BFS
CP
LPS
RAY
STO
backprop
bfs
hotspot
nw
matMul

Method: A stepwise algorithm automatically selects key design parameters and significant

parameter interactions to build performance models with only relevant terms.

Results: Our method automatically and efficiently reveals the relative importance of

different design options for a 1 million-point design space in GPGPU-Sim.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
n

tr
ib

u
ti

o
n

s
to

 R
2

c$ #blk:intra intra smp #blk:dram dram #blk

Rodinia benchmarks rely on diverse

architectural features.

Only 300 samples out of 1 million possible

designs yield good model accuracy.

Observation: Designing GPUs involves discerning relative importance and potential

interactions of many design options, which is difficult even just for small design spaces.

SIMD width

flit size (B)

ru
n

ti
m

e
 (

c
y
c
le

s
)

#blk = 1
#blk = 4

#blk = 16

8
16

32
8 16

32

0.2M

0.4M

0.6M

A 3-parameter matrix multiply design space is full of

nonlinear parameter interactions.

Sample
Randomly sample a small number of designs
from a space with n parameters (Pi, i = 1..n).

Model
A stepwise regression algorithm selects
relevant parameters and interactions.

Predict
The resulting regression model predicts
performance of any design in the space.

Class I kernels: Texture/constant loads only,
requests don’t use L1 caches
Class II kernels: Mainly use shared memory,
limited benefits from caching
Class III kernels: Use DRAM and thus caches
frequently, but see large and unpredictable
performance variations from caching

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
ar

ti
cl

ef
ilt

er

b
ac

kp
ro

p
-2

b
ac

kp
ro

p
-1

sr
ad

-3

h
ea

rt
w

al
l

sr
ad

-4

b
fs

-2

sr
ad

-2

st
re

am
cl

u
st

er

cf
d

-1

b
fs

-1

km
ea

n
s-

2N
o

rm
al

iz
e

d
 r

u
n

ti
m

e
 (

ca
ch

e
s

o
n

 v
s.

 o
ff

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
ar

ti
cl

ef
ilt

er
b

ac
kp

ro
p

-2
b

ac
kp

ro
p

-1
sr

ad
-3

h
ea

rt
w

al
l

sr
ad

-4
b

fs
-2

sr
ad

-2
st

re
am

cl
u

st
er

cf
d

-1
b

fs
-1

km
ea

n
s-

2N
o

rm
al

iz
e

d
 L

2
 t

ra
ff

ic
 (

ca
ch

e
s

o
n

 v
s.

 o
ff

)

Observation: GPU caches have unpredictable and even detrimental performance impact.

Analysis 1: Cache hit rate is a poor predictor

of performance payoff.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
ar

ti
cl

ef
ilt

er
b

ac
kp

ro
p

-2
b

ac
kp

ro
p

-1
sr

ad
-3

h
ea

rt
w

al
l

sr
ad

-4
b

fs
-2

sr
ad

-2
st

re
am

cl
u

st
er

cf
d

-1
b

fs
-1

km
ea

n
s-

2N
o

rm
al

iz
e

d
 r

u
n

ti
m

e
 (

ca
ch

e
s

o
n

 v
s.

 o
ff

)

0

10

20

30

40

50

60

70

80

90

100

p
ar

ti
cl

ef
ilt

er

b
ac

kp
ro

p
-2

b
ac

kp
ro

p
-1

sr
ad

-3

h
ea

rt
w

al
l

sr
ad

-4

b
fs

-2

sr
ad

-2

st
re

am
cl

u
st

er

cf
d

-1

b
fs

-1

km
ea

n
s-

2

C
ac

h
e

 h
it

 r
at

e
 (

%
)

Analysis 2: Cache-induced memory traffic

reduction is a better performance predictor.

Our Work:

• Automate GPU cache payoff analysis. • Guide per-instruction GPU cache configuration.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

N
o

rm
al

iz
e

d
 r

u
n

ti
m

e
(w

it
h

 v
s.

 w
it

h
o

u
t

L1
 c

ac
h

e
s)

Rodinia benchmark suite, NVIDIA Tesla C2070

…

D
R

A
M

 a
d

d
re

ss
 s

p
ac

e

…

Within-warp locality
Threads in the same warp
access consecutive locations;
coalesced, no caching needed

warp 1 warp 2

…

D
R

A
M

 a
d

d
re

ss
 s

p
ac

e

…

Within-block locality

warp 1 warp 2

Threads in the same block
access consecutive locations;
short-term caching needed

…

D
R

A
M

 a
d

d
re

ss
 s

p
ac

e

…

Cross-instruction reuse

warp 1 warp 2

The same thread accesses
consecutive locations at
different points in time;
longer-term, difficult to cache

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

N
o

rm
al

iz
e

d
 r

u
n

ti
m

e

Cache always off Cache always on Our Approach: Conserv Our Approach: Aggress

Result 2: Based on the taxonomy, a compile-time algorithm can intelligently enable or

disable caching on a per-instruction basis to improve performance.

Result 1: We propose a GPU memory access locality taxonomy, which directly links

memory access patterns to cache utility and performance impact.

• Step 1: Compute load addresses of
load instructions

• Step 2: Estimate cache-on and
cache-off traffic

• Step 3: Decide whether to cache for
each instruction based on cache-on
traffic vs. cache-off traffic.

In real-system evaluation with an NVIDIA Tesla C2070, this algorithm improves the

average benefit of caching from 5.8% to 18%.

Conclusions:

• Regression methods can automatically and accurately model complex trade-offs in GPU

design spaces.

• 4 orders of magnitude reduction in design space evaluation time with less than 1.1%

average error.

Conclusions:

• Conserving memory bandwidth instead of hiding latency is GPU caches’ main purpose.

• A locality-based taxonomy helps programmers and tools predict GPU cache utility.

• A compile-time caching control algorithm improves the benefit of caching by 3X.

Reference: Charactering and Improving the Use of Demand-Fetched Caches in GPUs,

Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi, Intl. Conf. Supercomputing 2012

Reference: Stargazer: Automated Regression-Based GPU Design Space Exploration,

Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi, ISPASS 2012

Acknowledgement

In addition to Intel ISTC funding, this work was supported in part by the National Science

Foundation under Grant No. CCF-0916971. The authors also acknowledge the support

of the Gigascale Systems Research Center, one of six centers funded under the Focus

Center Research Program (FCRP), a Semiconductor Research Corporation entity.

Finally, we acknowledge equipment donations from NVIDIA and Intel.

