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Automated GPU Design Space Exploration Optimizing GPU Cache Utility

Our Work: Build GPU performance models from random design samples using automated 

parameter selection that can account for parameter pair interactions.
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runtime ~ param1 + param2 + param1 : param2

In a hypothetical 2-parameter design space, the 3 steps 

are shown color-coded.

current model M = {}

unused parameter set T = {P1, P2, …, Pn}

while T is not empty

for each Pi in T

generate a tentative model Mi = M + Pi
select the Mimax with the highest adjusted R^2

if Mimax’s adjusted R2 > M’s R2

M = Mimax, T = T - Pi
for each Pj (j != i) already in M

if interaction Pi:Pj is significant

M = M + Pi:Pj
else

return M

Initialization

If the next most 

significant factor 

indeed affects 

runtime, include it 

in the model 

Else exit the 

routine

Also test its 

interactions with 

included factors
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Method: A stepwise algorithm automatically selects key design parameters and significant 

parameter interactions to build performance models with only relevant terms.

Results: Our method automatically and efficiently reveals the relative importance of 

different design options for a 1 million-point design space in GPGPU-Sim.
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Rodinia benchmarks rely on diverse 

architectural features.

Only 300 samples out of 1 million possible 

designs yield good model accuracy.

Observation: Designing GPUs involves discerning relative importance and potential 

interactions of many design options, which is difficult even just for small design spaces.
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A 3-parameter matrix multiply design space is full of

nonlinear parameter interactions.

Sample
Randomly sample a small number of designs 
from a space with n parameters (Pi, i = 1..n).

Model
A stepwise regression algorithm selects 
relevant parameters and interactions.

Predict
The resulting regression model predicts 
performance of any design in the space.

Class I kernels: Texture/constant loads only, 
requests don’t use L1 caches
Class II kernels: Mainly use shared memory, 
limited benefits from caching
Class III kernels: Use DRAM and thus caches 
frequently, but see large and unpredictable
performance variations from caching
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Observation: GPU caches have unpredictable and even detrimental performance impact.

Analysis 1: Cache hit rate is a poor predictor 

of performance payoff.
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Analysis 2: Cache-induced memory traffic  

reduction is a better performance predictor.

Our Work:

• Automate GPU cache payoff analysis. • Guide per-instruction GPU cache configuration.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

N
o

rm
al

iz
e

d
 r

u
n

ti
m

e
(w

it
h

 v
s.

 w
it

h
o

u
t 

L1
 c

ac
h

e
s)

Rodinia benchmark suite, NVIDIA Tesla C2070
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Within-warp locality
Threads in the same warp 
access consecutive locations;
coalesced, no caching needed

warp 1 warp 2
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Within-block locality

warp 1 warp 2

Threads in the same block 
access consecutive locations;
short-term caching needed
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Cross-instruction reuse

warp 1 warp 2

The same thread accesses 
consecutive locations at 
different points in time; 
longer-term, difficult to cache
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Cache always off Cache always on Our Approach: Conserv Our Approach: Aggress

Result 2: Based on the taxonomy, a compile-time algorithm can intelligently enable or 

disable caching on a per-instruction basis to improve performance.

Result 1: We propose a GPU memory access locality taxonomy, which directly links 

memory access patterns to cache utility and performance impact.

• Step 1: Compute load addresses of 
load instructions

• Step 2: Estimate cache-on and 
cache-off traffic

• Step 3: Decide whether to cache for 
each instruction based on cache-on 
traffic vs. cache-off traffic.

In real-system evaluation with an NVIDIA Tesla C2070, this algorithm improves the 

average benefit of caching from 5.8% to 18%.

Conclusions:

• Regression methods can automatically and accurately model complex trade-offs in GPU 

design spaces.

• 4 orders of magnitude reduction in design space evaluation time with less than 1.1% 

average error.

Conclusions: 

• Conserving memory bandwidth instead of hiding latency is GPU caches’ main purpose.

• A locality-based taxonomy helps programmers and tools predict GPU cache utility.

• A compile-time caching control algorithm improves the benefit of caching by 3X.
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