~ Analyzing and Optimizing GPU Communication and Computation

Wenhao Jia (Princeton Univ), Kelly A. Shaw (Univ of Richmond), Margaret Martonosi (Princeton Univ)
... B R 7 O WS N = s

Automated GPU Design Space Exploration Optimizing GPU Cache Utility

Reference: Stargazer: Automated Regression-Based GPU Design Space Exploration, Reference: Charactering and Improving the Use of Demand-Fetched Caches in GPUs,
Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi, ISPASS 2012 Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi, Intl. Conf. Supercomputing 2012
Observation: Designing GPUs involves discerning relative importance and potential Observation: GPU caches have unpredictable and even detrimental performance impact.
Interactions of many design options, which is difficult even just for small design spaces. Rodinia benchmark suite, NVIDIA Tesla C2070

Class | kernels: Texture/constant loads only,
requests don’t use L1 caches

Class Il kernels: Mainly use shared memory,
limited benefits from caching

Class Il kernels: Use DRAM and thus caches
frequently, but see large and unpredictable
performance variations from caching

Y

CO00 PRk R
ONDOORNDDOOO®

Normalized runtime
(with vs. without L1 caches)

runtime (cycles)

Our Work:
« Automate GPU cache payoff analysis. * Guide per-instruction GPU cache configuration.

. 32
flit size (B) 32 6\\]\

A 3-parameter matrix multiply design space is full of
nonlinear parameter interactions.

Analysis 1: Cache hit rate Is a poor predictor Analysis 2: Cache-induced memory traffic
Our Work: Build GPU performance models from random design samples using automated of performance payoff. reduction is a better performance predictor.

parameter selection that can account for parameter pair interactions. T 2 100 — 2 = 2
o “ S
s 1.8 ©1.8 ©1.8
— — 4 runtime ~ paraml + param2 + paraml : param2 g 16 é’ 1.6 é’ 1.6 |
Sample 2 1.4 S o 1.4 o 1.4 .
Randomly sample a small number of designs § 1.2 £ S 1.2 S 1.2 -
from a space with n parameters (P;, i = 1..n). ° 1 = =1 T 1
~— I — £ L &=
v £ 0.8 o g 0.8 %08
— — £ 06 B 2 0.6 N 0.6
Model @ 204 % 04 04 -
A stepwise regression algorithm selects = : O'(z) £ 0.2 g02 -
relevant parameters and interactions. z FOE2TIN2ETIN P75 08373 2 0 Y TIT100823 0 2 0 =y gy
— — §9SCELERE3TE § £oorZeng35h§ cooBzZEEEEEE L c 0S8R ZRERE88 ¢
Predict m
The resulting regression model predicts In a hvoothetical 2 desi he 3 : : : :
performance of any design in the space. nanypot e“Caare'fr?éa'?]eéi'lforezl)gd”ezpace’t € 3 Steps Result 1: We propose a GPU memory access locality taxonomy, which directly links
— _ W - . - .
memory access patterns to cache utility and performance impact.
Method: A stepwise algorithm automatically selects key design parameters and significant
parameter interactions to build performance models with only relevant terms. ul llu “u uu uu uu
N N ¥ 'l’ | s III ! \f'\\:\\e\
current model M= {} B o \ \,7‘;{‘ ¥ NS \ Ny Q::\
unused parameter set T = {P,, P,, .., P,} Initialization g W f‘é W f‘é e
while T is not empty - ¢ 5 — i1 Lol ALl o —
for each P, in T 7 If the next most R ———— R Y~ R ———
generate a tentative model M; = M + P; _Significant factor ‘E" —— g !I ! I ‘E" ——
select the M, with the highest adjusted R"2 Indeed affects = : = : = :
if M, _.°s adjusted R?> > M’s R? runtime, include it -) - : -)
MM . T=T-p | inthe model Within-warp locality =~ Within-block locality Cross-instruction reuse
for e;m:;] P. (!= il) alreadv in M 1 Also test its Threads in the same warp Threads in the same block The same thread accesses
] . J J_) . y o interactions with access consecutive locations; access consecutive locations; consecutive locations at
if interaction P;:P; is significant included factors — coalesced, no caching needed short-term caching needed different points in time;
M=M+ Pi:Pj | longer-term, difficult to cache
else "] Else exit the _ T - - -
eturn M outine Result 2: Based on the taxonomy, a compile-time algorithm can intelligently enable or
B disable caching on a per-instruction basis to improve performance.
Results: Our method automatically and efficiently reveals the relative importance of * Step 1: Compute load addresses of
different design options for a 1 million-point design space in GPGPU-Sim. load instructions Warp0 | Warpl .| Warps | TR | T
o Step 2: Estimate cache-on and Alindex /32] tid/32 0-3 4-7 28-31 128 B 32x8=2568B Y
_ _ 6 cache-off traffic Blindex *32] tid*32 03 1024-1027 .. 8196-8199 128x256 32x 256 N
mc$ m#blk:intra = intra msmp m#blk:dram mdram m#blk — AES ” * Step 3: Decide whether to cache for 32-35 B =8 KB
L o = g Ur e each instruction based on cache-on . _ \
0.9 - - 12k NN L CP traffic vs. cache-off traffic.
o 0.8 - = LPS
] . RAY : : : : :
Egg il - STO In real-system evaluation with an NVIDIA Tesla C2070, this algorithm improves the
c 0.6 - > S BEEE - back - -
205 | g °r o1 b average benefit of caching from 5.8% to 18%.
3 04 - O 6 — hotspot
E 0'3] Dé ******* nw i Cache always off ~ w Cache always on Our Approach: Conserv i Our Approach: Aggress
S s 4r o T matMul
O 0.2 - %
0.1 - 2r
O 7 I I I I I I I I I I O
S L XL SO K F Qo\ S © 0 300
v Vo °’@a€9 « @‘§\ Training sample size)
Rodinia benchmarks rely on diverse Only 300 samples out of 1 million possible -
architectural features. designs yield good model accuracy. l[
- | <
Conclusions: &

* Regression methods can automatically and accurately model complex trade-offs in GPU
design spaces. Conclusions:
4 orders of magnitude reduction in design space evaluation time with less than 1.1%) Conservin.g memory bandwidth instead of hiding latency is GPU caches® main purpose
average error. _ : el ‘
* A locality-based taxonomy helps programmers and tools predict GPU cache utility.
« A compile-time caching control algorithm improves the benefit of caching by 3X.
" i | In addition to Intel ISTC funding, this work was supported in part by the National Science Carnegle G -
| I | Foundation under Grant No. CCF-0916971. The authors also acknowledge the support - ¢
! I !‘j of the Gigascale Systems Research Center, one of six centers funded under the Focus MBHOII eorg Ia l n tel
Center Research Program (FCRP), a Semiconductor Research Corporation entity. ® ® TeCh
Intel Science & Technology Finally, we acknowledge equipment donations from NVIDIA and Intel. UIllVGI’Slty =

Center for Cloud Computing

Acknowledgement

PRINCETON
UNIVERsITY UC Berkeley :

