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Automated GPU Design Space Exploration Optimizing GPU Cache Utility

Reference: Stargazer: Automated Regression-Based GPU Design Space Exploration, Reference: Charactering and Improving the Use of Demand-Fetched Caches in GPUs,
Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi, ISPASS 2012 Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi, Intl. Conf. Supercomputing 2012
Observation: Designing GPUs involves discerning relative importance and potential Observation: GPU caches have unpredictable and even detrimental performance impact.
Interactions of many design options, which is difficult even just for small design spaces. Rodinia benchmark suite, NVIDIA Tesla C2070

Class | kernels: Texture/constant loads only,
requests don’t use L1 caches

Class Il kernels: Mainly use shared memory,
limited benefits from caching

Class Il kernels: Use DRAM and thus caches
frequently, but see large and unpredictable
performance variations from caching
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Our Work:
« Automate GPU cache payoff analysis. * Guide per-instruction GPU cache configuration.
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A 3-parameter matrix multiply design space is full of
nonlinear parameter interactions.

Analysis 1: Cache hit rate Is a poor predictor  Analysis 2: Cache-induced memory traffic
Our Work: Build GPU performance models from random design samples using automated of performance payoff. reduction is a better performance predictor.

parameter selection that can account for parameter pair interactions. T 2 100 — 2 = 2
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Method: A stepwise algorithm automatically selects key design parameters and significant
parameter interactions to build performance models with only relevant terms. ul llu “u uu uu uu
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B disable caching on a per-instruction basis to improve performance.
Results: Our method automatically and efficiently reveals the relative importance of * Step 1: Compute load addresses of
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Conclusions: &

* Regression methods can automatically and accurately model complex trade-offs in GPU
design spaces. Conclusions:
4 orders of magnitude reduction in design space evaluation time with less than 1.1% ) Conservin.g memory bandwidth instead of hiding latency is GPU caches® main purpose
average error. _ : el ‘
* A locality-based taxonomy helps programmers and tools predict GPU cache utility.
« A compile-time caching control algorithm improves the benefit of caching by 3X.
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