Overview

- Distributed storage often shares cluster machines.
 - E.g., within data-intensive computing frameworks.
- Want ability to grow/shrink server set elastically.
- Adapting to demand.
- Releasing unneeded servers for other activities.
- Traditional distributed storage not elastic.
- Primary/non-primary data layouts allow this.
 - One copy of all data on primaries.
 - Can ensure availability with subset of servers.
 - Replicas stored on non-primaries.
 - Can elastically activate/release these servers.
- Goal: A storage system that can:
 - Deactivate/reactivate servers quickly to save machine hours.
 - But still maintain high performance at the same time.

Equal Work Data Layout

- P primaries and (N-P) non-primaries.
- Equal work arrangement on non-primaries.
 - Number the servers, starting with the P primaries.
- Store \(\geq B/X \) blocks on non-primary server \(X \).
- Guarantees equal distribution of read work.
 - Even when active set grows or shrinks.
- Number (P) of primaries creates tradeoff.
 - Small P maximizes elasticity.
 - Small P creates a write bottleneck.
- Offloading removes the tradeoff.
 - Offload reads from primaries, when possible.
 - Offload writes, when necessary, to offload set.
- Explicit offload set retains agility.

Read and Write Data Offloading

- Number (P) of primaries creates tradeoff.
- Small P maximizes elasticity.
- Small P creates a write bottleneck.
- Offloading removes the tradeoff.
- Offload reads from primaries, when possible.
- Offload writes, when necessary, to offload set.
- Explicit offload set retains agility.

Policy Analysis with Industrial Traces

- Real-world traces reveal great potential for machine hour saving.
- JackRabbit wins over state-of-art elastic storage systems like Rabbit and Sierra.
- JackRabbit significantly reduces machine hour usage and data migration.

JackRabbit Performance

- JackRabbit implements equal work and offloading.
- Implemented as modified HDFS.
- Read throughput equal to or better than HDFS.
- Write throughput scales with offload set.
- Minimize cleanup overhead.

Other Layout Features

- Fault-tolerant elasticity, via gearing.
 - Organize each primary's secondary replicas.
 - Failure of a primary then doesn't remove elasticity.
- Multi-volume data layout.
 - Have each volume use distinct primaries.
 - One volume's primaries are others' non-primaries.
 - Allows small P without underutilized capacity.