MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu

Bufferless Routing Reduces Power But Also Degrades Performance

Pure bufferless deflection routing (CHIPPER) reduces network throughput \rightarrow reduced application performance But, reduced power and area are desirable

MinBD: Buffered Deflection Routing

Side Buffering

- When flits arrive, perform deflection routing first.
- Buffer up to one deflected flit in a small "side buffer".
- Re-inject side-buffered flits when space is available.

Dual-width Ejection

Replicate ejector module to allow two flits/cycle to eject (captures most demand, eliminates bottleneck)

Silver-Flit Prioritization

- Introduce lower Silver Flit priority locally at router
- Does not interfere with **Golden Flit** correctness
- Allows for coordinated deflection arbitration

• Bufferless routers eliminate buffers \rightarrow less static power • Bufferless routers introduce deflections \rightarrow higher dynamic power and lower performance at high load

Combine Deflection and Buffering for the Best of Both Worlds

Key Insight: Starting with pure bufferless deflection routing (CHIPPER), adding a small buffer allows router to buffer some flits and deflect other flits at fine granularity.

- Deflection rate reduces relative to bufferless routers which **deflect all contending flits**
- Buffer is more efficiently used relative to inputbuffered routers which **buffer all flits**

Shortcomings in Prior Bufferless

MinBD

Results

Deflection Routers

- **1.** All contending flits are deflected: high dynamic power and low performance at high load (when many flits contend)
 - **Deflection rate** in CHIPPER is 28% on average
- 2. Only one flit can be ejected per cycle: when multiple flits arrive simultaneously, some must be deflected
 - **Ejection bottleneck** causes deflections in 9% of all cycles in CHIPPER on average (4x4 network)
- **3. Uncoordinated prioritization unnecessarily deflects**: pseudorandom arbitration under Golden Packet leads to priority inversions inside routers

Inject

Eject

- **Best energy efficiency** of all evaluated designs
- Close to buffered performance for lower cost

