
EXPLORATORY TESTING AT SCALE
Jiri Simsa, Randy Bryant, Garth Gibson (Carnegie Mellon University), Jason Hickey (Google)

PROBLEM SOLUTION

SCALABILITY IMPROVING UTILIZATION

THEORETICAL LIMITS

▪ Concurrency manifests test non-determinism
▪ Systematic testing controls the order of concurrent events and

systematically enumerates different concurrent scenarios
▪ To mitigate combinatorial explosion, state space reduction

techniques avoid exploration of equivalent scenarios
▪ For large-scale distributed programs, parallelize testing:

efficient & load-balanced exploration

▪ Distributed dynamic partial order reduction (DPOR) based on
a novel state space exploration algorithm: n-partitioned
depth-first search

▪ Dynamic deadline for fault tolerance; trade space complexity
for parallelism in testing

▪ Implementation demonstrated to scale up to cluster of 1,024
nodes (speed up upwards of 750x)

▪ Initial and final phase of exploration underutilizes worker
fleet at large scale

▪ Two techniques to improve utilization: variable time budget,
redundant exploration

▪ The centralized master is a potential bottleneck
▪ At 1024 workers, memory overhead of the master 4MB →

possible to scale to hundreds of thousands of workers
▪ At 1024 workers and 10-second worker time budget, master

processes roughly 100 RPCs per second at 20% CPU utilization
▪ To scale beyond thousands of workers → scale worker time

budget, better hardware, optimize software stack

▪ Improved speed up from 538x to 916x, from 610x to 759x,
and from 696x to 865x for the respective tests

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700

A
ct

iv
e

W
or

ke
rs

Runtime (secs)

Scheduling(10) Utilization

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

A
ct

iv
e

W
or

ke
rs

Runtime (secs)

Scheduling(10) Utilization

 32
 64

 128
 256
 512

 1024

32 64 128 256 512 1024

Sp
ee

du
p

Workers

Resource(6,6)* with concurrent DPOR

Realized
Ideal

CONF RUNTIME(S) SPEEDUP
32 Workers 31,105.00 24.18
64 Workers 14,681.67 51.42
128 Workers 7,557.33 99.98
256 Workers 3,874.67 193.88
512 Workers 2,051.67 366.30
1024 Workers 1,396.33 538.49

 32
 64

 128
 256
 512

 1024

32 64 128 256 512 1024

Sp
ee

du
p

Workers

Store(12,3,3)* with concurrent DPOR

Realized
Ideal

CONF RUNTIME(S) SPEEDUP
32 Workers 26,646.00 29.06
64 Workers 13,396.33 57.80
128 Workers 6,252.33 126.09
256 Workers 3,332.00 233.28
512 Workers 1,784.00 434.54
1024 Workers 1,269.33 610.61

 32
 64

 128
 256
 512

 1024

32 64 128 256 512 1024

Sp
ee

du
p

Workers

Scheduling(10)* with concurrent DPOR

Realized
Ideal

CONF RUNTIME(S) SPEEDUP
32 Workers 17,707.33 25.73
64 Workers 8,870.67 51.36
128 Workers 4,468.33 101.96
256 Workers 2,278.33 199.98
512 Workers 1,046.00 435.67
1024 Workers 655.67 696.21

For this example, dynamic partial order reduction explores on the order of 18.5 million
branches and the sequential implementation is expected to require 209 hours to finish.

For this example, dynamic partial order reduction explores on the order of 21 million
branches and the sequential implementation is expected to require 215 hours to finish.

For this example, dynamic partial order reduction explores on the order of 3.6 million
branches and the sequential implementation is expected to require 126 hours to finish.

1024 workers, without optimizations.

1024 workers, with optimizations.

*instances of actor program tests from the test suite of
 Google's next-generation cluster management system

