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EVALUATION

EXECUTION ALGORITHM

CONCLUSIONS

▪ State Machine Replication:
▪ Fault tolerance through redundancy
▪ All replicas execute the same commands in the same order

▪ Tolerates F failures with 2F+1 replicas
▪ Replicas can fail by crashing (non-Byzantine)

▪ Clients submit commands to any replica
▪ No contention for instances 

▪ Available without interruption if F+1 replicas 
are non-faulty (2F+1 replicas total)

▪ Leader brokers all communication with clients
▪ Handles O(N) messages per command

▪ State machine unavailable until new leader is 
elected after a failure

AVAILABILITY

LATENCY VS. THROUGHPUT

THROUGHPUT

WIDE-AREA 
COMMIT LATENCY

▪ Instances ordered at commit time
▪ Ordering attributes chosen along 

with commands

▪ Pre-ordered instance space

▪ Can we commit after only one round?
▪ Yes (fast path), if enough acceptors agree on the same 

attributes
 Fast quorum size =  F + ( F + 1) / 2

▪ Optimal for 3 and 5 replica setups
▪ Better than Fast/Generalized Paxos by 1

▪ Performed independently on each replica:
1. Wait until command C is committed
2. Build C’s dependency graph recursively
3. Find strongly connected components (SCCs)
4. Execute:

▪ Execute SCCs in inverse topological order
▪ Execute commands within each SCC in increasing 

sequence number order

▪ High throughput due to load balancing
▪ Optimal commit latency in wide area when 

tolerating 1 and 2 faults
▪ Constantly available if majority of replicas alive
▪ Better handling of slow replicas than previous 

Paxos versions
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▪ Order only commands that interfere
▪ Ordering attributes:

1.  Dependency list
2.  Approximate sequence number


