
EGALITARIAN PAXOS: THERE IS MORE CONSENSUS IN EGALITARIAN PARLIAMENTS
Iulian Moraru, David Andersen (Carnegie Mellon University), Michael Kaminsky (Intel)

PAXOS OVERVIEW INTUITION

BOTTLENECK IN (MULTI-)PAXOS

COMMIT ALGORITHM

EGALITARIAN PAXOS

OPTIMIZED EPAXOS

EVALUATION

EXECUTION ALGORITHM

CONCLUSIONS

▪ State Machine Replication:
▪ Fault tolerance through redundancy
▪ All replicas execute the same commands in the same order

▪ Tolerates F failures with 2F+1 replicas
▪ Replicas can fail by crashing (non-Byzantine)

▪ Clients submit commands to any replica
▪ No contention for instances

▪ Available without interruption if F+1 replicas
are non-faulty (2F+1 replicas total)

▪ Leader brokers all communication with clients
▪ Handles O(N) messages per command

▪ State machine unavailable until new leader is
elected after a failure

AVAILABILITY

LATENCY VS. THROUGHPUT

THROUGHPUT

WIDE-AREA
COMMIT LATENCY

▪ Instances ordered at commit time
▪ Ordering attributes chosen along

with commands

▪ Pre-ordered instance space

▪ Can we commit after only one round?
▪ Yes (fast path), if enough acceptors agree on the same

attributes
 Fast quorum size = F + (F + 1) / 2

▪ Optimal for 3 and 5 replica setups
▪ Better than Fast/Generalized Paxos by 1

▪ Performed independently on each replica:
1. Wait until command C is committed
2. Build C’s dependency graph recursively
3. Find strongly connected components (SCCs)
4. Execute:

▪ Execute SCCs in inverse topological order
▪ Execute commands within each SCC in increasing

sequence number order

▪ High throughput due to load balancing
▪ Optimal commit latency in wide area when

tolerating 1 and 2 faults
▪ Constantly available if majority of replicas alive
▪ Better handling of slow replicas than previous

Paxos versions

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 [r

eq
s

/ s
ec

]

Time [sec]

replica failure

delayed commits

no-ops exhausted

EPaxos
Mencius

Paxos

C1: update obj_A ACK C1

PreAccept C1

R3

R1

R2
Commit C1

R4

R5

OK C1

C2: update obj_B

PreAccept C2 OK C2 Commit C2

ACK C2

C3: update obj_A
ACK C3

PreAccept C3

R3

R1

R2
Commit C3

R4

R5

OK C3

C4: update obj_A

PreAccept C4
OK C4 Commit C4

ACK C4

 C3 C4

Accept C3(C4) OK C3

EPaxos

Mencius

Generalized
Paxos

Multi-Paxos
(CA leader)

0 50 100 150 200 250

Median Commit Latency [ms]

EU
JP

CA
VA

85ms

90ms
130ms

300ms

150ms

OR

3 Replicas

Throughput [reqs / sec]
0 5000 10000 15000 20000 25000

EPaxos,0%
EPaxos,2%

EPaxos,25%
EPaxos,100%

Mencius
Paxos

EPaxos,slow−acc,0%
Mencius,slow−acc,0%

5 Replicas

Throughput [reqs / sec]
0 5000 10000 15000 20000 25000

3 Replicas

Throughput [reqs / sec]
0 10000 20000 30000 40000 50000

EPaxos,0%
EPaxos,2%

EPaxos,25%
EPaxos,100%

Mencius
Paxos

EPaxos,slow−acc,0%
EPaxos,slow−acc,100%

Mencius,slow−acc
Paxos,slow−leader

5 Replicas

Throughput [reqs / sec]
0 10000 20000 30000 40000 50000

 10
 20
 30
 40
 50
 60
 70
 80
 90

 2000 4000 6000 8000 10000 12000 14000 16000 18000

9
9

%
ile

 L
at

en
cy

 [m
s]

Throughput [requests/second]

Paxos
Mencius 100%

Mencius 0%
EPaxos 100%

EPaxos 25%
EPaxos 0%

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
ed

ia
n

La
te

nc
y

[m
s]

Throughput [requests/second]

Paxos
Mencius 100%

Mencius 0%
EPaxos 100%

EPaxos 25%
EPaxos 0%

Paxos
1 2 3 4 ...
A BDC

EPaxos
1 2 3 4 ...

R1
R2
R3

A

C
D B

▪ Order only commands that interfere
▪ Ordering attributes:

1. Dependency list
2. Approximate sequence number

