The Memory Latency Problem

- Commodity DRAM is optimized mainly for capacity, not latency
 - 16x increased capacity vs. 1.3x reduced latency

Latency-Capacity Tradeoff

-

Leveraging the TL-DRAM Substrate

- Fully transparent (no change to system)
 - Use near-segment as hardware-managed cache
 - Far segment: Main memory
 - Near segment: Caches an accessed row
 - Memory controller manages the near segment
 - Use near-segment as software-managed cache
 - OS/VMM manages the near segment
 - Multi-level main memory
 - Allocate from fast vs. slow DRAM
 - Application or system software decides where a page goes

Results

- Single-core
 - System: CPU: 5.3GHz/LLC: 512KB (per core)
 - Memory: DDR3-1066, Row-interleaved & Closed-row
 - Benchmark: TPC, Stream, SPEC CPU2006, random-access
 - Simulation: in-house x86 simulator with detailed memory model

- Multi-core
 - SC: 11.5%, WMC: 8.5%, BBC: 20.1%-17.9%
 - Normalized Energy Consumption

Summary and Ongoing Work

- TL-DRAM: A new memory architecture that introduces latency heterogeneity by keeping technology homogeneity
 - Same chip, same technology: fast and slow portions
- Exposing TL-DRAM to system software
 - System software management algorithms
- Exploring Tiered Latency in NVM
 - Could be easier to adopt
- Fitting TL-DRAM into DRAM/NVM/Flash/Disk cooperative page management and allocation mechanisms