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BIG PICTURE WHAT’S AN ML ALGORITHM?

STALENESS LOCALITY

ADAPTIVE SYNCHRONIZATION ONGOING EXPLORATIONS

▪ Many ML algorithms, but grouped into families
▪ Five major families (ML Pie)
▪ Each family uses math and techniques

▪ ML researchers keep implementing from scratch
▪ Effort duplicated on MPI, distributed state, etc.
▪ Little code reuse between research groups

▪ Need system support for Big ML that:
▪ Handles computation and data partitioning
▪ Addresses unique aspects of ML families
▪ Facilitates future systems-ML research 

▪ Most "ML algorithms" are combo of two things:
▪ Mathematical/statistical model
▪ Algorithmic technique to solve the model

▪ This ML pie is model-centric
▪ Family members share mathematical properties
▪ Techniques may be used in more than one family

▪ ML algorithms iterate until convergence
▪ Minor errors in intermediate data induce more iterations, 

but don't prevent convergence
▪ Each iteration reads/writes shared intermediate data

▪ Locking quickly becomes a bottleneck
▪ Limited network bandwidth a secondary bottleneck

▪ Big idea: let threads work on stale data
▪ More iterations, but often much faster

▪ See LazyTables poster for more info! 

▪ Intermediate data is often large and distributed
▪ Computation should be near intermediate data being used

▪ Intermediate data usage patterns change over time
▪ May shift focus within intermediate data
▪ Adaptive placement required to maximize performance

▪ Staleness can help with locality
▪ LazyTables caches stale copies near each thread 

▪ Synchronization among threads can help and hurt
▪ Slows iteration rate and often not needed
▪ But, highly correlated variables converge slowly without it

▪ Big idea: dynamic variable sets
▪ Within a set, update are synchronized
▪ Between sets, they are not
▪ Adaptively formed by measuring 

correlation 

▪ Refining the ML pie
▪ Useful for identifying systems 

opportunities
▪ Evaluating existing platforms

▪ E.g., GraphLab, Spark, Piccolo
▪ Each has strengths and weaknesses
▪ Substantial slices of pie served by none

▪ Evaluating new systems support ideas
▪ With real ML algorithm 

implementations 
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(1) Put highly correlated 
variables in the same set 
 
(2) Update within-set
variables synchronously 

(3) Schedule di�erent sets 
to run asynchronously 
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Fresh reads/writes Stale reads/writes 
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The freshness/latency sweet spot 
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(1) Schedule 
compute task on 
machine with 
needed data  

(2) Store intermediate 
data with the compute 
task that needs it most 

(3) Move 
intermediate data as 
access needs change 

Locality: Input Data, Intermediate Data, and Computation 
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