Memory-Effcient GroupBy-Aggregate using Compressed Buffer Trees Hrishikesh Amur (GT), Wolfgang Richter (CMU), David G. Andersen (CMU), Michael Kaminsky (Intel), Karsten Schwan (GT), Athula Balachandran (CMU), Erik Zawadzki (CMU)

NEED FOR MEMORY-EFFICIENCY

COMPRESSED BUFFER TREES

- Cost of DRAM
- Memory capacity per core decreasing [Lim, et al. ISCA'09]
- Future architectures including 3D-stacked DRAM have capacity constraints [Loh, et al., SHAW'12]

How to use compression to build memoryefficient and fast

Amazon EC2 resource costs using linear regression from Nov'12

[Lim et al. ISCA'09]

GROUPBY-AGGREGATE

Sort vs. Hash-based GroupBy-Aggregate

- Google's MapReduce and Hadoop use sorting as the **GroupBy operator**
- Hash-based grouping (common in RDBMS) performs better for many MapReduce applications. [Yu, Gunda,

GroupBy-Aggregate?

The Compressed Buffer Tree

In-memory B-tree with each node augmented with a memory buffer Inspired by the buffer tree [Arge, Algorithmica'03]

Isard, SOSP'09], [Li, et al. SIGMOD'11]

	Per-entry memory (B)	
Allocator	unordered	google
	map	sparsehash
hoard	64.9	67.8
tcmalloc	57.2	43
jemalloc	58.1	41

External sorting works

entails memory overheads; Dataset: key: 8B C-style string, value: 4B integer

Implementation of hashing

Memory efficiency through compression

Effectiveness through compressing large buffers

High performance through buffering

