
APPLICATION-TO-CORE MAPPING POLICIES TO REDUCE 
MEMORY INTERFERENCE IN MULTI-CORE SYSTEMS

Reetuparna Das§, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh Kumar‡, Mani Azimi‡
(Carnegie Mellon University, §University of Michigan, ‡Intel Labs)

BACKGROUND & PROBLEMS

OUR SOLUTION

KEY RESULTS

NETWORK ON-CHIP PROBLEMS

Unbalanced Network Load

Unaware of the 
location of the 

memory controller

System performance varies with 
different mappings

Memory Controller
• Current operating systems are unaware of:

• On-chip interconnect topology
• Application interference characteristics

KEY INSIGHTS

IDENTIFYING SENSITIVE APPLICATIONS

APPLICATION-TO-CORE MAPPING POLICY
1. Network & memory load not balanced across the network 
2. Overall performance degrades when applications that interfere 

significantly with each other get mapped to closeby cores
3. Some applications benefit significantly from being mapped close 

to a shared resource

• Stall Time per Miss (STPM): average number of cycles a core is 
stalled because of a cache miss

→ Applications with high STPM are interference-sensitive

• L1 Misses per Thousand Instruction (MPKI)
→ Applications with high MPKI are network-intensive

• Sensitive applications are applications with 
high STPM and high MPKI

1. Clustering: A sub-network where applications mapped to a cluster 
typically access resources within that cluster

2. Mapping policy across clusters: 
• Equally divides the network load among clusters
• Protects interference-sensitive applications from others by assigning 

them their own cluster
3. Mapping policy within cluster: Maps network-intensive and 

interference-sensitive applications close to the memory controller
4. Dynamically migrate applications between cores 

Balanced Mapping with Reduced Interference
Radial Inter-cluster Mapping

METHODOLOGY – 3 SYSTEMS RESULTS

Performance

NoC Power

Fairness

Static A2C vs Dynamic A2C

• Baseline with random mapping (BASE), 
• Random mapping of applications to cores (CLUSTER+RND)
• Our final system with application-to-core (A2C)

Number of Cores 60
L1 Cache 32KB per core. 4 ways, 2-cycle latency
L2 Cache 256KB per core, 16 ways, 6-cycle latency
MSHR 32 entries
Main Memory 4GB. 160-cycle latency

4 channels at 16GB/s
Network Router 4 VCs per port, 4 flits per VC

2-stage wormhole
Network
Topology

8x8 mesh, 128 bit bi-directional links

Memory 
Management

4KB physical and virtual page
512 entries TLB 
CLOCK page allocation and replacement


