PACMAN: COORDINATED MEMORY CACHING FOR PARALLEL JOBS
Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, Dhruba Borthakur, Srikanth Kandula, Scott Shenker, Ion Stoica (UC Berkeley)

MOTIVATION
• MAAnalytics jobs are parallel and process large amounts of data
 • Machines have tens of gigabytes of memory
 • Falling memory prices
 • Median utilization of 19%
 • Heavy-tailed Input Sizes
 • Elephant and mice jobs
 • 92% of smallest job inputs can fit in memory

ALL-OR-NOTHING
• Jobs speed up when multiples of its wave-width are cached
 • Wave-width: #parallel executing tasks
 • Small single-waved jobs require 100% memory locality
 • Cache hit-ratio insufficient; even MIN speeds up jobs by only 13%
 • Sticky policy: Focus replacements on incompletely cached waves

COORDINATED CACHING
• Coordinator has global view of cache
 • Eviction and task placement
 • Average Completion Time
 • LIFE: Evict from file with highest wave-width
 • Learn wave-width across multiple runs; file size correlates with wave-width
 • Cluster Utilization
 • LFU-F: Evict from file with highest frequency
 • Overlap across map and reduce phases → sticky policy is important

EVALUATION
• Replayed Facebook and Bing workloads
 • LIFE reduces average completion time by 53% and 51% in Facebook and Bing workloads
 • Small jobs see 77% improvement
 • LFU-F improves cluster utilization by 47% and 53% in the Facebook and Bing workloads
 • LIFE and LFU-F beat Belady's MIN despite lower cache hit-ratio
 • Pre-fetch & Pre-replace → Ideal (87%) speedup
 • Pre-replacement ~ Oracle cache evasion

PRE-FETCH AND PRE-REPLACE
• Oracle cache eviction and singly-accessed inputs
 • Preparation Jobs: Large and multi-waved
 • Pre-fetch for later waves of preparation jobs
 • Evict inputs after multi-waved job ends
 • If singly-accessed, good!
 • If not, pre-fetch all but first wave
 • Pre-replace with files of lowest wave-width

FUTURE WORK
• Proof of optimal cache eviction
• Hierarchical caching to include SSDs
• Details: HotOS 2011, NSDI 2012