
PLFS/HDFS: HPC APPLICATIONS ON CLOUD STORAGE
Chuck Cranor, Milo Polte, Garth Gibson (Carnegie Mellon University)

PROBLEM PARALLEL LOG STRUCTURED FILESYSTEM (PLFS)

PLFS I/O STORE ARCHITECTURE

RESULTS

HDFS API AND PLATFORM ISSUES

▪ Parallel High Performance Computing (HPC) applications
checkpoint progress to a single shared file on a networked
filesystem

▪ The filesystem must:
▪ Make newly created checkpoint files visible on all nodes

at file creation time
▪ Allow nodes to have concurrent write access at varying

offsets to the checkpoint file
▪ Cloud storage systems such as the Hadoop File Systems (HDFS) are

optimized for cloud-based applications such as Map Reduce
▪ POSIX I/O semantics are relaxed to improve performance:

▪ Only one node can have a file open for writing at a time
▪ All writes are append-only

▪ Storage resources allocated to HDFS cloud storage cannot be
used by HPC applications for N-1 checkpointing

▪ FUSE or MPI-based filesystem that converts N-1
checkpointing to N-N checkpointing by breaking each node's
write operations out into a log file
▪ Improves HPC checkpoint performance by avoiding

underlying filesystem bottlenecks
▪ PLFS's log structured writes fit the filesystem semantics

provided by the HDFS cloud storage system
▪ If PLFS could write its logs to HDFS, it could provide N-1

checkpoint semantics for HPC applications using HDFS for storage

▪ Insert new I/O store layer into PLFS to allow multiple types
of backing filesystems to be used (including non-POSIX ones)

▪ Current list of I/O stores: POSIX, HDFS, PVFS, IOFSL (in progress)
▪ HDFS I/O store module uses libhdfs API for log I/O

▪ Hadoop's libhdfs uses Java Native Interface (JNI) to
provide C/C++ access to HDFS Java methods

▪ Links a Java Virtual Machine into PLFS

▪ PLFS/HDFS is roughly comparable to PVFS
▪ writes: HDFS1 always writes to local disk (fast, no network)

▪ HDFS3 has 3x replication overhead
▪ PVFS network limited with small access size

▪ reads: HDFS benefits from PLFS' log structured writes
▪ Kernel buffer cache hurts 47001 reads due to page alignment
▪ 1M HDFS suffers from extra overhead of Java/data copies
▪ 1M HDFS1 outperforms HDFS3 due to balanced I/O pattern

▪ Must map PLFS I/O Store calls to HDFS API, 3 cases:
1. direct mapping: read maps to hdfsPread()
2. mapping with minor adjustments

▪ POSIX file descriptor to hdfsFile handle structure
▪ owner/group int ids vs. owner/group strings
▪ POSIX file/dir creation API sets permissions too, HDFS does

not
3. not possible (device files, symbolic links)

▪ HDFS Java platform has issues when used by
threaded/forking C++ applications such as PLFS and is
difficult to debug due to multiple domain crossings
▪ e.g. write: application → kernel → FUSE daemon → JVM

→ HDFS daemon

Platform: Marmot PRObE cluster
▪ 1.6GHz AMD Opteron dual processor, 16GB memory, Gigabit

Ethernet
▪ Hadoop HDFS 0.21.0, FUSE 2.8, PLFS, OrangeFS 2.8.4 (PVFS)
▪ LANL test_fs N-1 checkpoint benchmark with 47001, 48K, or

1M byte objects
▪ 6 test cases: PVFS, HDFS1 (no replication), HDFS3 (3 way

replication) through a kernel mount point and a library API
▪ Initial results averaged over 5 runs with std. deviation show

PLFS PLFS PLFS

Node 1 Node 2 Node 3

Concurrent HPC
Application

Writers

PLFS Virtualized File View

HDFS storage
(tri-replicated)

HPC APP ON PLFS-HDFS

API calls
PLFS MPIIO

libplfs

hdfs.jar
HDFS

libhdfs
libjvm

POSIX libc mounted fs
(e.g. PanFS, PVFS)

PLFS FUSE

HDFS
I/O Store

PLFS container

new I/O store API

I/O Store
POSIX

Java code

10 20 30 40 50 60
Node number

0

500

1000

To
ta

l s
iz

e
of

 d
at

a
se

rv
ed

 (M
B

)

HFDS1
HDFS3

HDFS1 and HDFS3 I/O Access Pattern

47001 48K 1M
access unit size (bytes)

0

500

1000

re
ad

 b
an

dw
id

th
 (M

by
te

s/
s) PVFS-kern-read

PVFS-lib-read
HDFS1-kern-read
HDFS1-lib-read
HDFS3-kern-read
HDFS3-lib-read

Read Bandwidth (64 nodes)

47001 48K 1M
access unit size (bytes)

0

500

1000

1500

2000

w
rit

e
ba

nd
w

id
th

 (M
by

te
s/

s)

PVFS-kern-write
PVFS-lib-write
HDFS1-kern-write
HDFS1-lib-write
HDFS3-kern-write
HDFS3-lib-write

Write Bandwidth (64 nodes)

