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MOTIVATION ARCHITECTURE 
 Cluster computing frameworks like MapReduce and Dryad 

provide a wide range of computational operators, but lack 
an abstraction for memory 
 

 This makes them inefficient for apps that reuse datasets: 
 Iterative algorithms (machine learning, graphs, …) 
 Interactive data mining (e.g. Matlab, Python, SQL) 
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 Nodes keep partitions of RDDs 
in RAM as requested by user 
 

 Fault tolerance through lineage 
 RDDs remember series of 

transformations needed to 
rebuild each partition 

 

 Language-integrated Scala API 
 Runs on Mesos resource mgr. 
 Can share data with Hadoop 
 

// Build an RDD containing all the 
// lines with “ERROR” in a log file 
file = spark.textFile("hdfs://...”) 
errs = file.filter(_.contains("ERROR")) 
errs.persist() 
 
// Count errors in the in-memory RDD 
ones = errs.map(_ => 1) 
count = ones.reduce(_ + _) 

TextFileRDD 
path = hdfs://… 

file: 

FilteredRDD errs: 

MappedRDD ones: 

filter(contains(…)) 

map(x => …) 

LINEAGE EXAMPLE 
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CHALLENGE 
 How do we design a distributed memory abstraction that is 

both general, fault-tolerant and efficient? 
 

 Traditional in-memory storage systems (key-value stores, 
databases, etc) replicate data or logs for fault tolerance, 
which would greatly slow down in-memory computation 

RESILIENT DISTRIBUTED DATASETS (RDDs) 
 Achieve fault tolerance efficiently by restricting the 

programming interface to coarse-grained operations 
 

 Can then recover using lineage (log one operation to apply 
to many records, rather than logging the data) 
 

 Still general enough to express many parallel algorithms, 
because these algorithms are data-parallel to start with 
 Can express MapReduce, Dryad, SQL, Pregel, iterative 

MR (Haloop), and new apps that these don’t capture 
 Unify these specialized models for the first time 

CURRENT PROJECTS 
 Hive on Spark (Shark): interactive SQL queries on big data at 

20x the speed of Apache Hive 
 

 Lineage-based replay debugger: 
 Rebuild RDDs created during a Spark program and query 

them interactively 
 Re-run any task in a Java debugger (recreating its data) 

 

 Streaming Spark: extend RDDs for low-latency processing 

OPEN SOURCE: www.spark-project.org 
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