
SPARK: FAULT-TOLERANT IN-MEMORY CLUSTER COMPUTING 
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica (UC Berkeley) 

 

MOTIVATION ARCHITECTURE 
 Cluster computing frameworks like MapReduce and Dryad 

provide a wide range of computational operators, but lack 
an abstraction for memory 
 

 This makes them inefficient for apps that reuse datasets: 
 Iterative algorithms (machine learning, graphs, …) 
 Interactive data mining (e.g. Matlab, Python, SQL) 

Block 1 

Block 2 

Block 3 

Worker 

Worker 

Worker 

Driver 
tasks 

results 

Cache 1 

Cache 2 

Cache 3 

 Nodes keep partitions of RDDs 
in RAM as requested by user 
 

 Fault tolerance through lineage 
 RDDs remember series of 

transformations needed to 
rebuild each partition 

 

 Language-integrated Scala API 
 Runs on Mesos resource mgr. 
 Can share data with Hadoop 
 

// Build an RDD containing all the 
// lines with “ERROR” in a log file 
file = spark.textFile("hdfs://...”) 
errs = file.filter(_.contains("ERROR")) 
errs.persist() 
 
// Count errors in the in-memory RDD 
ones = errs.map(_ => 1) 
count = ones.reduce(_ + _) 

TextFileRDD 
path = hdfs://… 

file: 

FilteredRDD errs: 

MappedRDD ones: 

filter(contains(…)) 

map(x => …) 

LINEAGE EXAMPLE 

RESULTS 

0 

1000 

2000 

3000 

4000 

0 20 

R
un

ni
ng

 T
im

e 
(s

) 

Number of iterations 
Hadoop Spark 

Logistic Regression 

71
 

39
 

28
 

0 
20 
40 
60 
80 

20 40 80 

It
er

at
io

n 
Ti

m
e 

(s
) 

Number of nodes 
15

21
 

82
0 

42
2 

0 
400 
800 

1200 
1600 
2000 

20 40 80 

It
er

at
io

n 
Ti

m
e 

(s
) 

Number of nodes 

Twitter Spam Classifier 

City Traffic Estimation 

Interactive Queries 

1.
7 

3.
2 

5.
5 

2.
0 

4.
5 7.

0 

2.
8 

4.
7 6.

6 

0 

2 

4 

6 

8 

10 

100 GB 500 GB 1 TB 

R
es

po
ns

e 
Ti

m
e 

(s
) 

Data size (GB) 

Exact Match + View Count 
Substring Match + View Count 
Total View Count 

30 

1200 

0 500 1000 

Spark 

Hive 

Time (min) 

Conviva GeoReport 

CHALLENGE 
 How do we design a distributed memory abstraction that is 

both general, fault-tolerant and efficient? 
 

 Traditional in-memory storage systems (key-value stores, 
databases, etc) replicate data or logs for fault tolerance, 
which would greatly slow down in-memory computation 

RESILIENT DISTRIBUTED DATASETS (RDDs) 
 Achieve fault tolerance efficiently by restricting the 

programming interface to coarse-grained operations 
 

 Can then recover using lineage (log one operation to apply 
to many records, rather than logging the data) 
 

 Still general enough to express many parallel algorithms, 
because these algorithms are data-parallel to start with 
 Can express MapReduce, Dryad, SQL, Pregel, iterative 

MR (Haloop), and new apps that these don’t capture 
 Unify these specialized models for the first time 

CURRENT PROJECTS 
 Hive on Spark (Shark): interactive SQL queries on big data at 

20x the speed of Apache Hive 
 

 Lineage-based replay debugger: 
 Rebuild RDDs created during a Spark program and query 

them interactively 
 Re-run any task in a Java debugger (recreating its data) 

 

 Streaming Spark: extend RDDs for low-latency processing 

OPEN SOURCE: www.spark-project.org 


	Slide Number 1

