
SPARK: FAULT-TOLERANT IN-MEMORY CLUSTER COMPUTING 
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica (UC Berkeley) 

 

MOTIVATION ARCHITECTURE 
 Cluster computing frameworks like MapReduce and Dryad 

provide a wide range of computational operators, but lack 
an abstraction for memory 
 

 This makes them inefficient for apps that reuse datasets: 
 Iterative algorithms (machine learning, graphs, …) 
 Interactive data mining (e.g. Matlab, Python, SQL) 

Block 1 

Block 2 

Block 3 

Worker 

Worker 

Worker 

Driver 
tasks 

results 

Cache 1 

Cache 2 

Cache 3 

 Nodes keep partitions of RDDs 
in RAM as requested by user 
 

 Fault tolerance through lineage 
 RDDs remember series of 

transformations needed to 
rebuild each partition 

 

 Language-integrated Scala API 
 Runs on Mesos resource mgr. 
 Can share data with Hadoop 
 

// Build an RDD containing all the 
// lines with “ERROR” in a log file 
file = spark.textFile("hdfs://...”) 
errs = file.filter(_.contains("ERROR")) 
errs.persist() 
 
// Count errors in the in-memory RDD 
ones = errs.map(_ => 1) 
count = ones.reduce(_ + _) 

TextFileRDD 
path = hdfs://… 

file: 

FilteredRDD errs: 

MappedRDD ones: 

filter(contains(…)) 

map(x => …) 

LINEAGE EXAMPLE 

RESULTS 

0 

1000 

2000 

3000 

4000 

0 20 

R
un

ni
ng

 T
im

e 
(s

) 

Number of iterations 
Hadoop Spark 

Logistic Regression 

71
 

39
 

28
 

0 
20 
40 
60 
80 

20 40 80 

It
er

at
io

n 
Ti

m
e 

(s
) 

Number of nodes 
15

21
 

82
0 

42
2 

0 
400 
800 

1200 
1600 
2000 

20 40 80 

It
er

at
io

n 
Ti

m
e 

(s
) 

Number of nodes 

Twitter Spam Classifier 

City Traffic Estimation 

Interactive Queries 

1.
7 

3.
2 

5.
5 

2.
0 

4.
5 7.

0 

2.
8 

4.
7 6.

6 

0 

2 

4 

6 

8 

10 

100 GB 500 GB 1 TB 

R
es

po
ns

e 
Ti

m
e 

(s
) 

Data size (GB) 

Exact Match + View Count 
Substring Match + View Count 
Total View Count 

30 

1200 

0 500 1000 

Spark 

Hive 

Time (min) 

Conviva GeoReport 

CHALLENGE 
 How do we design a distributed memory abstraction that is 

both general, fault-tolerant and efficient? 
 

 Traditional in-memory storage systems (key-value stores, 
databases, etc) replicate data or logs for fault tolerance, 
which would greatly slow down in-memory computation 

RESILIENT DISTRIBUTED DATASETS (RDDs) 
 Achieve fault tolerance efficiently by restricting the 

programming interface to coarse-grained operations 
 

 Can then recover using lineage (log one operation to apply 
to many records, rather than logging the data) 
 

 Still general enough to express many parallel algorithms, 
because these algorithms are data-parallel to start with 
 Can express MapReduce, Dryad, SQL, Pregel, iterative 

MR (Haloop), and new apps that these don’t capture 
 Unify these specialized models for the first time 

CURRENT PROJECTS 
 Hive on Spark (Shark): interactive SQL queries on big data at 

20x the speed of Apache Hive 
 

 Lineage-based replay debugger: 
 Rebuild RDDs created during a Spark program and query 

them interactively 
 Re-run any task in a Java debugger (recreating its data) 

 

 Streaming Spark: extend RDDs for low-latency processing 

OPEN SOURCE: www.spark-project.org 


	Slide Number 1

