SILT: A MEMORY-EFFICIENT, HIGH-PERFORMANCE KEY-VALUE STORE
Hyeontaek Lim, Bin Fan, David G. Andersen (CMU), Michael Kaminsky (Intel Labs)

INDEXING DATA IN HIGH-PERFORMANCE KEY-VALUE STORES

In-memory index: Index structure entirely in DRAM
- Common design in high-performance key-value stores
 - E.g., BufferHash, Haystack, FlashStore, FAWN-DS, ...
Main challenge: Memory overheads of in-memory indexes
- In-memory indexes are taking much memory
 - 4 billions of 32-byte items (128 GB) may require 16 GB DRAM
 - Per-entry DRAM space is being more scarce
 - Flash capacity/$ is growing faster than DRAM capacity/$
 - High performance is still important in key-value stores

→ Memory-efficient, high-performance key-value store?

DESIGN: THREE DIFFERENT BASIC STORES WITH NEW INDEXING DATA STRUCTURES

Entropy-coded trie index
for low memory overheads (0.4 bytes/entry in DRAM)

Partial-key cuckoo hash index
for write-optimized log-structured files (6.5 bytes/entry in DRAM)

Filter-only partial-key cuckoo hashing to bridge a gap between other stores (2.2 bytes/entry in DRAM)

INDEX SIZE OF STORE COMBINATIONS

Inserting 50 million new key-value pairs

→ Combining three stores yields the best memory efficiency

QUERY THROUGHPUT

Under high (upper) and low (lower) loads

→ High query performance is maintained in both cases