
PROBLEM BASED BENCHMARKS
Guy Blelloch, Julian Shun, Kanat Tangwongsan, Harsha Vardhan Simhadri (CMU), Phillip Gibbons (Intel Labs)

MOTIVATION BENCHMARK GOALS

There are many different approaches to programming an
algorithm or application to run in parallel:

What is the best approach? How does a programmer decide
which approach to use? How can we benchmark parallel
programming approaches?

Wait-free data structures
Race-free algorithms
Commutative operations
Amorphous data parallelism
Tuple space
Automatic parallelism
…

Transactions
Nested parallelism
Map reduce
Data parallelism
Thread pools
Futures
PGAS
Message passing
Bulk synchronization

Initial Focus: Application kernels with
 Wide coverage for “real world” problems
 Reasonably simple solutions (< 500 lines of code)
 Can test correctness or measure quality of output
 Scalable problem sizes
 Relevant for a variety of system scales, from a multicore

server to a cloud data center

0

4

8

12

16

20

24

28

32

Sor
t

Dupli
ca

te
 R

emova
l

Dict
ionar

y

Min
Spa

nning Tre
e

Max
 In

dep
en

d. S
et

Gra
ph

 Colorin
g

Gra
ph

 Sepa
ra

to
r

BFS

Delau
nay

 T
ria

ng
.

Con
vex

 H
ull

Near
est

Neighbo
rs

Spa
rse

 M
xV

Nbo
dy

Suffi
x A

rra
y

Sequences and strings: sorting, suffix arrays, seq. alignment
Graph algorithms: Min spanning tree, BFS, coloring, separators
Machine learning: Sparse SVM, K-means, Gibbs sampling, LASSO
Graphics: Ray Tracing, Micropoly Rendering
Geometry: Delaunay Triangulation, Nearest Neighbors, Nbody

A set of “problem based benchmarks”:
Must satisfy a particular input-output interface,
but there are no rules on the techniques used

Measure the quality of solutions based on:
 Performance and speedup over a variety of input
 types and w.r.t. best sequential implementations
 Quality of output. Some benchmarks don’t have a
 right answer or are approximations
 Complexity of code. Lines of code & other measures
 Determinism. Returns the same output on same input
 Generic. Code should be generic over types
 Correctness guarantees
 Easily analyze performance, at least approximately
 Robustness at massive scale

Benchmark LoC Approach
Sort 230 Sampling, nested parallel
Duplicate Removal 122 Hashing
Dictionary 140 Deterministic hashing
Min Spanning Tree 162 Incremental, speculative
Max Independ. Set 63 Data parallel, random
Graph Coloring 45 Data parallel
Graph Separator 345 Nested parallel
BFS 45 Data parallel
Delaunay Triang. 325 Incremental, speculative
Convex Hull 93 Nested parallel
Nearest Neighbors 106 Nested parallel
Sparse MxV 22 Data parallel
Nbody 170 Nested parallel
Suffix Array 138 Data parallel

SELECTING BENCHMARKS: CRITERIA DOMAINS AND EXAMPLES

INITIAL BENCHMARK RESULTS SPEEDUPS (32 CORE NEHALEM)

“Internally Deterministic Parallel Algorithms can Be Fast”
To appear in PPoPP’12

	Slide Number 1

