
MESOS: SHARING THE CLUSTER
Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, Ion Stoica (UC Berkeley)

MOTIVATION
 Rapid innovation in cluster computing applications:
MapReduce, Spark, Webapps, Distributed FSs & DBs, …
 Organizations currently statically partition clusters
 Instead, enable multiple frameworks to share same cluster

IMPLEMENTATION

ARCHITECTURE

 20,000 lines of C++
 APIs in C, C++, Java, Python
 Isolation via Linux containers
 Fault tolerance via ZooKeeper

SOLUTION

 Mesos is a “cluster operating system” over which diverse
parallel applications can run
 Provides minimal API for efficient resource sharing, then

leaves maximum control to applications

APPLICATIONS
 Hadoop port: 900 line patch
 MPI port: 160 line wrapper
 Torque port
 Spark: 1300 lines
 Elastic web apps

MACROBENCHMARK RESULTS

18%

50%

92% 97%

0%

20%

40%

60%

80%

100%

Separate
Hadoops

Hadoops on
Nexus, no delay

sched.

Hadoops on
Nexus, 1s delay

sched.

Hadoops on
Nexus, 5s delay

sched.

Pe
rc

en
t L

oc
al

 M
ap

s

565
486

369 338

0

100

200

300

400

500

600

Separate
Hadoops

Hadoops on
Nexus, no

delay sched.

Hadoops on
Nexus, 1s delay

sched.

Hadoops on
Nexus, 5s delay

sched.

Jo
b

R
un

ni
ng

 T
im

e
(s

)

Data Locality Through Delay Scheduling

CONTRIBUTIONS

 Fine-grained sharing: applications divide work into tasks
that are multiplexed in time & space

 Distributed scheduling model (resource offers) to support
varied application needs
 Mesos chooses how many resources to offer each FW
 Frameworks chooses which resources to accept
 Deployments at:

Mesos slave Mesos slave Mesos slave
MPI
executor

task

Hadoop
executor

task

MPI
executor

task task

Hadoop
executor

task task

Mesos
master

Hadoop
scheduler

MPI
scheduler

Standby
master

Standby
master

ZooKeepe
r quorum

Allocation
module

Allocation
module

Allocation
module

PROBLEM

 Traditional coarse-grained cluster schedulers unsuitable
 Applications consist of fine-grained tasks and need to

scale up and down dynamically
 Data locality crucial for efficiency
 Users run queries interactively
 Apps developed by multiple

groups and rapidly evolving
Example: Hadoop job and
task durations at Facebook

CPU Allocation: Static Partitioning vs. Mesos

DATA LOCALITY RESULTS

CPU and Memory Utilization

Framework
Sum of Exec Times

with Static
Partitioning (s)

Sum of Exec
Times on Mesos

(s)
Speedup

Facebook
Hadoop Mix 7235 6319 1.14

Large Hadoop
Mix 3143 1494 2.10

Spark 1684 1338 1.26

Torque / MPI 3210 3352 0.96

~2x speedup!

~10% Higher
Utilization (ave)!

CPU Allocation to Applications

Job Runtimes

	Slide Number 1

