THREAD CLUSTER MEMORY SCHEDULING

3
_ 7 _
k. 9

MOTIVATION

= Memory is a key shared resource in CMPs

= Contention for memory access leads to:
= Degradation in single-thread performance
= Starvation

o

How to achieve both system throughput and fairness?

INSIGHT: BEST OF BOTH WORLDS

higher
priority

For Throughput

Prioritize memory-non-intensive threads

e
For Fairness

Unfairness caused by memory-intensive
“2“ being prioritized over each other
* Shuffle threads

—

thread
thread
thread
thread

S—

—

thread
Memory-intensive threads have
. different vulnerability to interference
e Shuffle asymmetrically

thread

HOW TO CLUSTER THREADS?

Stepl Sort threads by MPKI (misses per kiloinstruction)

_
higher

MPKI

Intensive
cluster

Non-intensive
cluster

\—'—I

T a<10%
T = Total memory bandwidth usage ClusterThreshold

Step2 Memory bandwidth usage aT divides clusters

PRIORITIZATION WITHIN INTENSIVE CLUSTER -

How to quantify difference between threads?

—

Proposed metric: Niceness

Bank-level parallelism

Vulnerability to interference

Row-buffer locality

Causes interference

=+ Niceness

Shuffle priorities in a
niceness-aware, asymmetric manner

Center for Cloud Computing

Yoongu Kim, Michael Papamichael, Onur Mutlu, Mor Harchol-Balter (CMU)

SH

ORTCOMINGS OF PREVIOUS WORK

n §16 System throughput

0 %; . bias e [RFCFS

g - ¢ il STFM

v B .

s 6 A ey PAR-BS

:Iq:) £ Fairness

ol © bias @ ATLAS
= 1

3

8.2 84 86 8.8 9

Weighted Speedup
Better system throughput
Previous approaches are biased: can’t achieve both

THREAD CLUSTER MEMORY SCHEDULING

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

, , Non-intensive
Memory-non-intensive

cluste
— r =
thread
- Prioritized

Threads in stem
Memory-intensive

Fairness

Intensive cluster

PRIORITIZATION WITHIN INTENSIVE CLUSTER - |

Case Study: Two intensive threads contending
1. random-access

2. streaming } Which is slowed down more easily?

Prioritize random-access Prioritize streaming

14
12

8... m

10

down

Slowdown
)]

Slow

N

o

random-access

random-access

streaming .
streaming

random-access thread is more easily slowed down
= Vulnherable to interference
= Causes less interference to other threads

RESULTS

24 cores, 4 channels: 96 workloads

c 16 FRFCFS
A % 14 O
Q ge)
£ BERE
< B
* BERE
Q -
£
o ?é 6

=

4
7.5 8 8.5 9 9.5 10

Weighted Speedup
Better system throughput

Carnegie G -] :
Mellon eorgia & l) W PRINCETON ®
Intel Science & Technology UniVGI'Sity TQCh V] l n te UNIVERSTTY UC Berkeley

