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MOTIVATION SHORTCOMINGS OF PREVIOUS WORK

INSIGHT: BEST OF BOTH WORLDS THREAD CLUSTER MEMORY SCHEDULING

HOW TO CLUSTER THREADS? PRIORITIZATION WITHIN INTENSIVE CLUSTER - I

PRIORITIZATION WITHIN INTENSIVE CLUSTER - II RESULTS

▪ Memory is a key shared resource in CMPs
▪ Contention for memory access leads to:

▪ Degradation in single-thread performance
▪ Starvation

Case Study: Two intensive threads contending
1. random-access
2. streaming
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How to achieve both system throughput and fairness? 
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Previous approaches are biased: can’t achieve both 
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Prioritize memory-non-intensive threads 

For Throughput 

Unfairness caused by memory-intensive 
being prioritized over each other  
• Shuffle threads 

 

Memory-intensive threads have  
different vulnerability to interference 
• Shuffle asymmetrically 

For Fairness 
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1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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Threads in the system 

Step1 Sort threads by MPKI (misses per kiloinstruction) 
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T = Total memory bandwidth usage 
Step2 Memory bandwidth usage αT divides clusters 
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Prioritize random-access Prioritize streaming 

random-access thread is more easily slowed down  ▪ Vulnerable to interference  
▪ Causes less interference to other threads  
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How to quantify difference between threads? 
Proposed metric: Niceness 

Vulnerability to interference 

Bank-level parallelism 

Causes interference 

Row-buffer locality 

+ Niceness - 

Niceness High Low 

Shuffle priorities in a 
niceness-aware, asymmetric manner

 

Which is slowed down more easily?
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24 cores, 4 channels: 96 workloads 


