THREAD CLUSTER MEMORY SCHEDULING
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MOTIVATION

= Memory is a key shared resource in CMPs

= Contention for memory access leads to:
= Degradation in single-thread performance
= Starvation

o

How to achieve both system throughput and fairness?

INSIGHT: BEST OF BOTH WORLDS
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Memory-intensive threads have
. different vulnerability to interference
e Shuffle asymmetrically
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HOW TO CLUSTER THREADS?

Stepl Sort threads by MPKI (misses per kiloinstruction)
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Step2 Memory bandwidth usage aT divides clusters

PRIORITIZATION WITHIN INTENSIVE CLUSTER -

How to quantify difference between threads?
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Proposed metric: Niceness

Bank-level parallelism

Vulnerability to interference

Row-buffer locality

Causes interference

=+ Niceness

Shuffle priorities in a
niceness-aware, asymmetric manner
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ORTCOMINGS OF PREVIOUS WORK
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Weighted Speedup
Better system throughput
Previous approaches are biased: can’t achieve both

THREAD CLUSTER MEMORY SCHEDULING

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster
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Case Study: Two intensive threads contending
1. random-access

2. streaming } Which is slowed down more easily?

Prioritize random-access Prioritize streaming
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random-access thread is more easily slowed down
= Vulnherable to interference
= Causes less interference to other threads

RESULTS

24 cores, 4 channels: 96 workloads
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Weighted Speedup
Better system throughput
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