
THREAD CLUSTER MEMORY SCHEDULING
Yoongu Kim, Michael Papamichael, Onur Mutlu, Mor Harchol-Balter (CMU)

MOTIVATION SHORTCOMINGS OF PREVIOUS WORK

INSIGHT: BEST OF BOTH WORLDS THREAD CLUSTER MEMORY SCHEDULING

HOW TO CLUSTER THREADS? PRIORITIZATION WITHIN INTENSIVE CLUSTER - I

PRIORITIZATION WITHIN INTENSIVE CLUSTER - II RESULTS

▪ Memory is a key shared resource in CMPs
▪ Contention for memory access leads to:

▪ Degradation in single-thread performance
▪ Starvation

Case Study: Two intensive threads contending
1. random-access
2. streaming

Core Core

Core Core
Memory

Contention

How to achieve both system throughput and fairness?

1

6

11

16

8 8.2 8.4 8.6 8.8 9

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

FRFCFS

STFM

PAR-BS

ATLAS

System throughput
bias

Fairness
bias

Better system throughput

Be
tt

er

 fa
irn

es
s

Previous approaches are biased: can’t achieve both

thread

higher
priority

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
• Shuffle threads

Memory-intensive threads have
different vulnerability to interference
• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

thread thread

thread

thread
thread

thread

thread

Non-intensive
cluster

Intensive cluster

Memory-non-intensive

Memory-intensive

Prioritized

Throughput

Fairness

Threads in the system

Step1 Sort threads by MPKI (misses per kiloinstruction)

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad
 higher

MPKI

T α < 10%
ClusterThreshold

Intensive
cluster αT

Non-intensive
cluster

T = Total memory bandwidth usage
Step2 Memory bandwidth usage αT divides clusters

0
2
4
6
8

10
12
14

random-access
streaming

Sl
ow

do
w

n

Prioritize random-access Prioritize streaming

random-access thread is more easily slowed down ▪ Vulnerable to interference
▪ Causes less interference to other threads

0
2
4
6
8

10
12
14

random-access streaming

Sl
ow

do
w

n

7x
prioritized

1x

11x

prioritized

1x

How to quantify difference between threads?
Proposed metric: Niceness

Vulnerability to interference

Bank-level parallelism

Causes interference

Row-buffer locality

+ Niceness -

Niceness High Low

Shuffle priorities in a
niceness-aware, asymmetric manner

Which is slowed down more easily?

FRFCFS

STFM
PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup
Better system throughput

Be
tt

er
 fa

irn
es

s

24 cores, 4 channels: 96 workloads

